Amazing Pics: Mars also did not see before

We all know dear planet Earth, either through normal images or images taken by NASA ... But do you see from the images of planets other than Earth Mother?!!!

The Dutch creative bag converts images of Mars taken by the gloomy and by NASA satellites to different vivid images full of color and beauty accredited program for images so-called Terragen.

We've gathered together different images and amazing of the red planet Mars in the various chapters and the various cases is (covered with water and covered with snow)










APPROVED DRUG PRODUCTS free download





CONTENTS

PREFACE TO THIRTY SECOND EDITION………… ………… …………
..…................
iv
2
HOW TO USE THE DRUG PRODUCTS LISTS
..............................................................
2-1
2.1
Key Sections for Using the Drug Product Lists …………………….….………………
......
2-1
2.2
Drug Product Illustration ……………………………………………
..….…………….……..
2-3
2.3
Therapeutic Equivalence Evaluations Illustration ………………….….…………..………2-4 DRUG PRODUCT LISTS
Prescription Drug Product List ……………………………………….…………….………………
...
3-1
OTC Drug Product List ……………………………………………….…………….…………………4-1
Drug Products with Approval under Section 505 of the Act Administered
Drug Products Which Must Demonstrate in vivo Bioavailability
by the Center for Biologics Evaluation and Research List
...……….…….………………...
5-1
Discontinued Drug Product List .…………………………………………….…….………………
....
6-1
Orphan Products Designations and Approvals List …………….………….…….………………
..
7-1
Only if Product Fails to Achieve Adequate Dissolution …………………
..………………………..
8-1
APPENDICES
A.
Product Name Index ……….…...………………………….………..……………………A-1 B. Product Name Index Listed by Applicant ………………….……
..……………………..
B-1
C.
Uniform Terms …………………………………………….………
..…………...………...
C-1
PATENT AND EXCLUSIVITY INFORMATION ADDENDUM ……….……..………………..........AD1
A.
Patent and Exclusivity Lists …………………………….…
..……..……………..……ADA1
B.
Patent and Exclusivity Terms
...……………………….….………...…………………ADB1

Freezing

Freezing is the unit operation in which the temperature of a food is reduced below its
freezing point and a proportion of the water undergoes a change in state to form ice
crystals. The immobilisation of water to ice and the resulting concentration of dissolved
solutes in unfrozen water lower the water activity (aw) of the food (aw is described in
Chapter 1). Preservation is achieved by a combination of low temperatures, reduced
water activity and, in some foods, pre-treatment by blanching. There are only small
changes to nutritional or sensory qualities of foods when correct freezing and storage
procedures are followed.
The major groups of commercially frozen foods are as follows:
• fruits (strawberries, oranges, raspberries, blackcurrants) either whole or pure´ed, or as
juice concentrates
• vegetables (peas, green beans, sweetcorn, spinach, sprouts and potatoes)
• fish fillets and seafoods (cod, plaice, shrimps and crab meat) including fish fingers,
fish cakes or prepared dishes with an accompanying sauce
• meats (beef, lamb, poultry) as carcasses, boxed joints or cubes, and meat products
(sausages, beefburgers, reformed steaks)
• baked goods (bread, cakes, fruit and meat pies)
• prepared foods (pizzas, desserts, ice cream, complete meals and cook–freeze dishes).
Rapid increases in sales of frozen foods in recent years are closely associated with
increased ownership of domestic freezers and microwave ovens. Frozen foods and chilled
foods (Chapter 19) have an image of high quality and ‘freshness’ and, particularly in
meat, fruit and vegetable sectors, outsell canned or dried products.
Distribution of frozen foods has a relatively high cost, due to the need to maintain a
constant low temperature. Distribution logistics are discussed further in Chapter 19 in
relation to chilled foods and in Chapter 26. A recent advance in distribution of chilled
and frozen foods is described by Jennings (1999), in which carbon dioxide ‘snow’
(Section 21.2.4) is added to sealed containers of food, which are then loaded into
normal distribution vehicles. The time that a product can be held at the required chilled
or frozen storage temperature can be varied from four to 24 hours by adjusting the
amount of added snow. Other advantages of the system include greater flexibility in
being able to carry mixed loads at different temperatures in the same vehicle, greater
control over storage temperature and greater flexibility in use, compared to standard
refrigerated vehicles.
21.1 Theory
During freezing, sensible heat is first removed to lower the temperature of a food to the
freezing point. In fresh foods, heat produced by respiration is also removed (Chapter 19).
This is termed the heat load, and is important in determining the correct size of freezing
equipment for a particular production rate. Most foods contain a large proportion of water
(Table 21.1), which has a high specific heat (4200 J kg 1 K 1) and a high latent heat of
crystallisation (335 kJ kg 1). A substantial amount of energy is therefore needed to
remove latent heat, form ice crystals and hence to freeze foods. The latent heat of other
components of the food (for example fats) must also be removed before they can solidify
but in most foods these other components are present in smaller amounts and removal of
a relatively small amount of heat is needed for crystallisation to take place. Energy for
freezing is supplied as electrical energy, which is used to compress gases (refrigerants) in
mechanical freezing equipment (Sections 21.2.1–3) or to compress and cool cryogens
(Section 21.2.4).
If the temperature is monitored at the thermal centre of a food (the point that cools
most slowly) as heat is removed, a characteristic curve is obtained (Fig. 21.1).
The six components of the curve are as follows.


AS        The food is cooled to below its freezing point f which, with the exception of
pure water, is always below 0ºC (Table 21.1). At point S the water remains
liquid, although the temperature is below the freezing point. This phenomenon is
known as supercooling and may be as much as 10ºC below the freezing point.


SB         The temperature rises rapidly to the freezing point as ice crystals begin to form
and latent heat of crystallisation is released.


BC           Heat is removed from the food at the same rate as before, but it is latent heat
being removed as ice forms and the temperature therefore remains almost
constant. The freezing point is gradually depressed by the increase in solute
concentration in the unfrozen liquor, and the temperature therefore falls slightly.
It is during this stage that the major part of the ice is formed (Fig. 21.2).


CD      One of the solutes becomes supersaturated and crystallises out. The latent heat
of crystallisation is released and the temperature rises to the eutectic temperature
for that solute (Section 21.1.2).


















DE        Crystallisation of water and solutes continues. The total time tf taken (the
freezing plateau) is determined by the rate at which heat is removed.
EF         The temperature of the ice–water mixture falls to the temperature of the freezer.
A proportion of the water remains unfrozen at the temperatures used in
commercial freezing; the amount depends on the type and composition of the
food and the temperature of storage. For example at a storage temperature of
20ºC the percentage of water frozen is 88% in lamb, 91% in fish and 93% in
egg albumin.

Food Processing Technology Principles and Practice 2nd Edition (P. Fellows) free download









Contents


Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix
List of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii
List of acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxx
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
The food industry today . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
About this book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Note on the second edition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
PART I BASIC PRINCIPLES 7
1 Properties of foods and processing theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1 Properties of liquids, solids and gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.1 Density and specific gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.2 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.3 Surface activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.4 Rheology and texture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2 Material transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3 Fluid flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.1 Fluid flow through fluidised beds . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.4 Heat transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.4.1 Energy balances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.4.2 Mechanisms of heat transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.4.3 Sources of heat and methods of application to foods . . . . . . . 37
1.4.4 Energy conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.4.5 Effect of heat on micro-organisms . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.4.6 Effect of heat on nutritional and sensory characteristics . . . . 43
1.5 Water activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.5.1 Effect of aw on foods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.6 Effects of processing on sensory characteristics of foods . . . . . . . . . . . 48

1.6.1 Texture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
1.6.2 Taste, flavour and aroma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
1.6.3 Colour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
1.7 Effects of processing on nutritional properties . . . . . . . . . . . . . . . . . . . . . . 50
1.8 Food safety, good manufacturing practice and quality assurance . . . 52
1.8.1 HACCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
1.8.2 Hurdle technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
1.9 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
1.10 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2 Process control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.1 Automatic control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.1.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.1.2 Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.2 Computer-based systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.2.1 Programmable logic controllers (PLCs) . . . . . . . . . . . . . . . . . . . . 72
2.2.2 Types of control systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.2.3 Software developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.2.4 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.3 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
PART II AMBIENT-TEMPERATURE PROCESSING 81
3 Raw material preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.1 Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.1.1 Wet cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.1.2 Dry cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.1.3 Removing contaminants and foreign bodies . . . . . . . . . . . . . . . . 85
3.2 Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.2.1 Shape and size sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.2.2 Colour sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.2.3 Weight sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.3 Grading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.4 Peeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.4.1 Flash steam peeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.4.2 Knife peeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.4.3 Abrasion peeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.4.4 Caustic peeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.4.5 Flame peeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4 Size reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.1 Size reduction of solid foods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.1.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.1.2 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.1.3 Effect on foods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.2 Size reduction in liquid foods (emulsification and homogenisation) 110
4.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.2.2 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.2.3 Effect on foods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.3 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5 Mixing and forming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.1 Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.1.1 Theory of solids mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.1.2 Theory of liquids mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.1.3 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.1.4 Effect on foods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.2 Forming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.2.1 Bread moulders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.2.2 Pie and biscuit formers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.2.3 Confectionery moulders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.3 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6 Separation and concentration of food components . . . . . . . . . . . . . . . . . . . . 140
6.1 Centrifugation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.1.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.1.2 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.2 Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.2.2 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.3 Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.3.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.3.2 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.4 Extraction using solvents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.4.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.4.2 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.5 Membrane concentration (hyperfiltration and ultrafiltration) . . . . . . . . 157
6.5.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.5.2 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.6 Effect on foods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7 Fermentation and enzyme technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.1 Fermentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.1.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.1.2 Types of food fermentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.1.3 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.1.4 Effect on foods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.2 Enzyme technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.2.1 Enzyme production from micro-organisms . . . . . . . . . . . . . . . . . 186
7.2.2 Application of enzymes in food processing . . . . . . . . . . . . . . . . . 187
7.3 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
8 Irradiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
8.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
8.2 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
8.2.1 Measurement of radiation dose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
8.2.2 Dose distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
8.3 Effect on micro-organisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
8.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
8.4.1 Sterilisation (or ‘radappertisation’) . . . . . . . . . . . . . . . . . . . . . . . . . 202
8.4.2 Reduction of pathogens (or ‘radicidation’) . . . . . . . . . . . . . . . . . 202
8.4.3 Prolonging shelf life (or ‘radurisation’) . . . . . . . . . . . . . . . . . . . . 202
8.4.4 Control of ripening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
8.4.5 Disinfestation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
8.4.6 Inhibition of sprouting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
8.5 Effect on foods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
8.5.1 Induced radioactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
8.5.2 Radiolytic products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
8.5.3 Nutritional and sensory value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
8.6 Effect on packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
8.7 Detection of irradiated foods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
8.7.1 Physical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
8.7.2 Chemical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
8.7.3 Biological methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
8.8 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
8.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
9 Processing using electric fields, high hydrostatic pressure, light or
ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
9.1 Pulsed electric field processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
9.1.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
9.1.2 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
9.2 High pressure processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
9.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
9.2.2 Processing and equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
9.2.3 Effect on micro-organisms, enzymes and food components 221
9.3 Processing using pulsed light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
9.3.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
9.3.2 Equipment and operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
9.3.3 Effect on micro-organisms and foods . . . . . . . . . . . . . . . . . . . . . . 223
9.4 Processing using ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
9.4.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
9.4.2 Application to processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
9.5 Other methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
9.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226




shale sandstone conglomerate sp and gamma ray log interpertation vedio

shale sandstone conglomerate sp and gamma ray log interpertation




well control .pdf

 





Kicks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-2
Controlling a kick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-3
Shut-in procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-3
Kill methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-3
Wait-and-weight method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-3
Driller's method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-4
Concurrent method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-4
Kick control problems

stuck pipe .pdf free download






Differential sticking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2
ENVIRO-SPOT spotting fluid . . . . . . . . . . . . . . . . . . . . . . . . 12-4
DUAL PHASE spotting fluid . . . . . . . . . . . . . . . . . . . . . . . . . 12-5
Determining depth to stuck zone . . . . . . . . . . . . . . . . . . . . . . . 12-9
Packing off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-9
Undergauge hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-11
Plastic flowing formations . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-11
Wall-cake buildup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-11
Keyseating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-12
Freeing stuck pipe

Baroid Mud Handbook (well cementig .pdf free download )



Overview
The main cementing materials used in oilfield
applications are:
C Portland cement, API Classes A, C, H, and G
C Blast furnace slag (BFS)
C Pozzolans (fly ash), ASTM Types C and F
Portland cement is the name used for all cementitious
material composed largely of calcium, silica, and
aluminum oxides. Blast furnace slag (BFS) is a byproduct
obtained in the manufacture of pig-iron in a
blast furnace. Pozzolans are silica or silica/alumina
materials that react with calcium hydroxide (lime) and
water to form a stable cement. Pozzolans can be natural
or synthetic.
Cementing materials are used in drilling operations to:
C Isolate zones
C Support casing in the borehole
C Protect the casing from collapse, corrosion, and
drilling shock
C Plug non-producing wells for abandonment
C Plug a portion of a well for sidetracking
This chapter explains the use of additives to control
cementing slurry properties and provides the ideal
operational guidelines for each type of additive. Slurry
design and applications are provided for lead, tail, and
squeeze slurries. Plug design, spacer guidelines, and
spacer-volume calculations are also provided.












well cementig .pdf  free download
Cementing additives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-3
Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-3
Retarders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-5
Fluid-loss control additives . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-6
Extenders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-7
Free-water control additives . . . . . . . . . . . . . . . . . . . . . . . . . . 17-7
Weighting materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-8
Slag activators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-8
Dispersants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-9
Strength retrogression preventers . . . . . . . . . . . . . . . . . . . . . . . 17-9
Slurry design and applications . . . . . . . . . . . . . . . . . . . . . . . . . 17-10
Lead slurry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-10
Tail slurry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-10
Squeeze slurry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-11
Plugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-11
Spacers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-11
Spacer volume calculations . .

WORLDS FASTEST DRILLING CONNECTION

the fastest drilling connection i have ever seen


Drilling Oil wells in Algeria










Drilling Oil wells  in Algeria "Petroleum (Industry)" platform and it's types workover petroleum

ADVANCES IN COMPUTER SCIENCE AND ENGINEERING free download





Edited by Matt hias Schmidt

Contents


Part 1

Applied Computing Techniques 1
Next Generation Self-learning Style
in Pervasive Computing Environments 3
Kaoru Ota, Mianxiong Dong,
Long Zheng, Jun Ma, Li Li,
Daqiang Zhang and Minyi Guo
Automatic Generation of Programs 17
Ondřej Popelka and Jiří Štastný
Application of Computer Algebra into
the Analysis of a Malaria Model using MAPLE™ 37
Davinson Castaño Cano
Understanding Virtual Reality Technology:
Advances and Applications 53
Moses Okechukwu Onyesolu and Felista Udoka Eze
Real-Time Cross-Layer Routing
Protocol for Ad Hoc Wireless Sensor Networks 71
Khaled Daabaj and Shubat Ahmeda
Innovations in Mechanical Engineering 95
Experimental Implementation
of Lyapunov based MRAC for Small
Biped Robot Mimicking Human Gait 97
Pavan K. Vempaty, Ka C. Cheok, and Robert N. K. Loh
Performance Assessment of Multi-State
Systems with Critical Failure Modes:
Application to the Flotation Metallic Arsenic Circuit 113
Seraphin C. Abou
Object Oriented Modeling
of Rotating Electrical Machines 135
Christian Kral and Anton Haumer
Mathematical Modelling
and Simulation of Pneumatic Systems 161
Djordje Dihovicni and Miroslav Medenica
Longitudinal Vibration of Isotropic Solid Rods:
From Classical to Modern Theories 187
Michael Shatalov, Julian Marais,
Igor Fedotov and Michel Djouosseu Tenkam
A Multiphysics Analysis of Aluminum Welding
Flux Composition Optimization Methods 215
Joseph I. Achebo
Estimation of Space Air Change Rates and CO2
Generation Rates for Mechanically-Ventilated Buildings 237
Xiaoshu Lu, Tao Lu and Martti Viljanen
Decontamination of Solid and Powder
Foodstuffs using DIC Technology 261
Tamara Allaf, Colette Besombes,
Ismail Mih, Laurent Lefevre and Karim Allaf

Dynamic Analysis of a DC-DC Multiplier Converter 285
J. C. Mayo-Maldonado, R. Salas-Cabrera, J. C. Rosas-Caro,
H. Cisneros-Villegas, M. Gomez-Garcia, E. N.Salas-Cabrera,
R. Castillo-Gutierrez and O. Ruiz-Martinez
Computation Time Efficient Models
of DC-to-DC Converters for Multi-Domain Simulations 299
Johannes V. Gragger
How to Prove Period-Doubling Bifurcations
Existence for Systems of any Dimension -
Applications in Electronics and Thermal Field 311
Céline Gauthier-Quémard
Advances in Applied Modeling 335
Geometry-Induced Transport Properties
of Two Dimensional Networks 337
Zbigniew Domański
New Approach to a Tourist Navigation System
that Promotes Interaction with Environment 353
Yoshio Nakatani, Ken Tanaka and Kanako Ichikawa
Logistic Operating Curves in Theory and Practice 371
Peter Nyhuis and Matthias Schmidt
Lütkenhöner’s „Intensity Dependence
of Auditory Responses“: An Instructional Example
in How Not To Do Computational Neurobiology 391
Lance Nizami
A Warning to the Human-Factors Engineer: False Derivations
of Riesz’s Weber Fraction, Piéron’s Law, and Others
Within Norwich et al.’s Entropy Theory of Perception 407
Lance Nizami
A Model of Adding Relations in Two Levels of a Linking
Pin Organization Structure with Two Subordinates 425
Kiyoshi Sawada
The Multi-Objective Refactoring Set Selection
Problem - A Solution Representation Analysis 441
Camelia Chisăliţă-Creţu

fundamentals of electricity free download




fundamentals of electricity

A review of basic principles of electricity & physics lec (4)

Complex Representation of Signals

Most generally, we can use complex or imaginary values for s (and/or A for that matter)
in equation 9, where s is known as the “complex frequency.” In electrical engineering it
is common practice to use the convention that
j = (-1)^.5 in order to avoid confusion with
the use of i to represent current; we will use that convention for the remainder of this
section. When s is purely imaginary, with the value s = jω and A is real, we can take
advantage of Euler’s relation, that:
We can apply a sinusoidally varying voltage at the frequency ω, V= cos(ωt), across the
capacitor. Note that the V is the real part of Aejωt = Re(Aest).
Substituting into equation 8:

We are interested only the real part of the current, of course, so equation 11 simplifies to
iC = –ωCAsin(ωt), the result of equation 6 above. Looking again at equation 9, when
s = jω the ratio of the voltage to the current is 1/ jω C.
Generalization of Ohm’s law
The ratio of a complex voltage, V, to a complex current, I, is represented by the
impedance, Z. Because sinusoidally varying signals are conveniently represented by
complex numbers (and, as we will see when we discuss the Fourier transform in a
separate section, this can be a generalized representation of most any signal we
encounter), this is an exceptionally powerful formalization. For complex signals, Ohm’s
law states simply that:

The magnitude of the impedance is given in units of Ohms, like resistance, but in
general also incorporates a phase shift. For capacitors, as noted above, the impedance is
1/jωC. Applying Voltage as a cosine wave results in a current that is an inverted sine
wave – a 90° phase shift. In general, multiplication by j represents a 90° phase shift.
As we noted above, the voltage and current relationships for most electrical circuits
(specifically, linear electrical circuits), can be found through the application of Ohm’s
law coupled with KVL and KCL. The Laplace transform solution, as in equation 9, allows
this to be generalized readily to the analysis of devices like capacitors, which store
energy.
One should be a little bit careful here concerning the values of ω, which are in units of
radians/second or angular frequency. In common use we generally speak of frequencies
in cycles/second or “Hertz”. As one cycle is 2π radians, ω=2πf, where the letter f denotes
the frequency in cycles/second. When the input voltage is a sinusoid with frequency, f,
equation 9 may be written as:

A review of basic principles of electricity & physics lec (3)

Energy Storage Devices

Though hundreds of different devices exist, we will consider just three other circuit
elements: batteries, capacitors and inductors.
A battery is a familiar device that is an approximation to an ideal Voltage source.
Physically, batteries produce voltage difference through the chemical separation of
charges. As current is allowed to flow from one pole of the battery to the other, charges
move back together releasing energy, generally into the circuit that connects the poles of
the battery. In the circuit of A1.003 (a), a wire connects the positive and negative pole of
a battery. If the wire were “ideal”, having zero resistance, we would expect that all of the
charge would flow instantaneously from the positive to the negative pole of the battery,
such that the current, dQ/dt, would be infinite. Of course this doesn’t actually happen.
Instead, it turns out that all real batteries show some resistance to current flow, which
limits the current. The circuit of A1.003 (b) shows a practical and realistic model of the
battery as an ideal Voltage source in series with a resistor. (This combination is known
as the Thévenin equivalent). Many of the electrical properties of neurons and other
excitable cells may be accurately modeled in this manner.

Capacitors
When two conductors are separated from one another by an insulator, and a source of
current is applied (Figure A1.004), positive charge will accumulate on one side of the
insulator and negative charge on the other, resulting in a buildup of Voltage. As long as
the charge keeps flowing the Voltage will increase steadily, and without limit.
Analogously, if a Voltage source is applied across the separated conductors, charge will
build (immediately, in the case of ideal conductors) of such a magnitude that the
potential energy difference is equal to the Voltage of the source. When the sources are
removed, however, the charge difference, and therefore the Voltage difference, is
retained across the insulating boundary, thus storing potential energy. A device made of
conductors – typically in the form of thin films – separated by an insulating layer is
known as a capacitor. However, capacitance will exist between any conductors
separated by an insulating layer or material. Unlike resistors, capacitors store energy,
rather than dissipate it.





The capacitance, C, is measured as the ratio of the charge across the capacitor to the
applied Voltage:
Q = CV.

The circuit symbol for a capacitor is shown in figure A1.005, and represents two
separated conductive plates.


The unit of capacitance is the Farad. A large capacitance, achieved by having a very
small insulating gap, means that a relatively small charge results in a large Voltage
potential difference, chiefly because the attractive forces between positive and negative
charge are very large over short distances. Taking the first derivative of equation 1, we
see that the current is proportional to the Voltage change over time.


In a sense, this appears similar to Ohm’s law, except that now the current is
proportional to the rate of change of the Voltage, rather than the Voltage alone, as it is in
a resistor. The capacitor, in this case, takes the place of the resistor, but one whose
resistance depends on the rate of change of the Voltage. Rather then resistance, the term
impedance, measured still in Ohms, is used to describe this behavior. In effect, this
means that while an insulating layer does not pass constant current, time-varying
currents may be passed. The units of Farads are defined such that a Voltage that
changes by 1 V/s, when applied across a 1 Farad capacitor, will result in the flow of 1
ampere (a very large amount) of current. Most often, capacitors used in electronic
circuits have capacitance of a few microfarads (μF).
Specifically, consider applying a sinusoidally varying voltage across the capacitor:



that is, a sinusoidal current with a 90° (=π/4) phase lead with respect to the Voltage.
The term, ω, is the frequency, and this frequency-dependent resistance, measured in
Ohms, is given the term impedance. Specifically, the impedance goes down as the
frequency goes up. Capacitors pass greater current at the same Voltage when the
frequency is higher. They are like resistors whose resistance decreases with frequency.
Unlike resistors however, which dissipate energy as heat, the capacitor only stores
energy, by converting between potential energy in the form of Voltage, and kinetic
energy in the form of current.

Ohms law tells us that the magnitude of this proportionality is the resistance, which we
now see is proportional to s. The exponential term, est, simply drops out of the equation.
No assumptions were made about A or s, however, except that they are constant with
respect to t. This solution form to the differential equation 4 is known as the Laplace
transform, and is an important solution method in all forms of linear systems.


A review of basic principles of electricity & physics lec (2)

Kirchhoff’s Laws

The path by which charge may flow between the positive and negative ends of a source
of Voltage or charge is known as a circuit. Sources of current, Voltage, and resistance to
current flow are presented in a set of standard symbols that are connected together in
circuit diagrams. In such diagrams, lines represent perfect, zero resistance, conductors.
Figure A1.01 shows these standard pictures. By convention, current is said to move from
positive to negative potentials and would imply the motion of positive charges (in
actuality, most currents in man made devices result from the motion of negative
charge). Circuit diagrams frequently use arrows to indicate the direction of current flow.
In the figure, note that the current out from the top, or positive end, of the Voltage
source is identical to the current in to the bottom. The same is true of the resistor in the
circuit and indeed in any element of a circuit: The current flow in is identical to the
current flow out. This general behavior of nodes in a circuit is known as Kirchhoff’s
current law (KCL).





Kirchhoff’s current law has an analog (referred to as a “dual”) in describing Voltage
differences in circuits. Kirchhoff’s Voltage law (KVL) states that the sum of the Voltage
differences around any closed loop in a circuit must be equal to zero. In applying KVL
you must pay attention to the direction you travel in the loop, as discussed below.
Series and Parallel Connections
When electrical elements are attached end-to-end they are connected “in series”, when
the current inputs and outputs of multiple elements are held in common, the devices are
connected in parallel. Figure A1.02 shows resistors connected to a Voltage source in
series and in parallel. In the series circuit, KCL tells us that the current through all three
devices is identical, while KVL informs us that the Voltages V1 and V2 have a sum equal
to Vs. Applying KCL to the parallel circuit we see that at the two nodes, i1 + i2 = i. KVL
tells us that traveling starting at the top and going clockwise around the loop that
includes R1 and R2, V2 – V1 = 0 and that V2 = V1. Likewise, in the loop made up of Vs
and V2, V2 – Vs = 0, implying that V2 = Vs. The two Kirchhoff’s laws, in combination, are
extremely powerful organizing principles. Understanding them makes it possible to
model the behavior of the overwhelming majority of electrical circuits and devices.

Clearly, when the resistors are in series the same current flows through each. By Ohm’s
law, the voltage across R1 is equal to iR1, and the Voltage that appears across R2 is iR2.
The Voltage that appears across the Voltage source is therefore the sum of the Voltages
across each resistor, or i(R1 + R2) (Note that this is the same as the expression of KVL
for this circuit: Vs = V1 + V2. The total resistance experienced by the Voltage source in
the series circuit is thus the sum of the individual resistors: resistance in series is the
sum of the individual resistances.
In the parallel circuit, there are two paths for current to go through the resistors. Not
surprisingly more current flows through the lower resistance path, and we can compute
the individual currents by Ohm’s law. Because the Voltage (V1 and V2) across these
resistors is identical (they are connected by perfect conductors), the current, i1 in R1 is
V/R1 and i2 is V/R2. By KCL, the total current that flows from the Voltage source is
equal to the sum of the currents through the two resistors:.

which is always less than either of the resistors alone.

A review of basic principles of electricity & physics lec (1)



Introduction
While this book is not intended as a comprehensive course in electricity and magnetism
there are a few principles that are so ubiquitous in functional magnetic resonance that
they appear repeatedly throughout this text and therefore warrant this brief overview.
Charge
Electrical charge is considered to be a fundamental property of materials. Physicists
recognize that charge exists in only two forms, positive and negative, and that it is
quantal in nature, with the smallest amount of charge being that of a single electron or
proton, each being exactly 1 unit of negative or positive charge, respectively. A single
unit of charge is extremely small, of course, and charge is more commonly measured in
units of Coulombs, equivalent to about 6.242 X 1018 unit charges. Positive and negative
charges exhibit a strong attractive force, whose magnitude is proportional inversely to
the square root of the distance that separates them. In its most stable state, bulk matter
has a net charge of zero, meaning that it contains an identical number of positive and
negative charges.
Voltage
When charges become separated by distance, the presence of an attractive force between
implies an increase in potential energy, which is released when the charges are moved
together. This energy difference is known as Voltage and is measured, naturally, in
Volts. Because the potential energy of the Voltage is also measure of the force that would
tend to move the charge, it is known also as the potential difference, or simply the
potential, the “electromotive force” or the e.m.f. and these terms are used
interchangeably, which can at times be confusing. Batteries are familiar voltage sources
that rely on chemical means to store potential energy. For convenience, the units of
Volts are defined in terms of other fundamental physical constants and units. One
Joule of work is required to move one Coulomb of charge through a potential difference
of 1 Volt. In practice, this means that a Coulomb is actually defined to set unit values of
Volts and Joules. Voltage must always refer to the energy difference between two points.
It is never actually correct to discuss the Voltage at a point, though you will often see
such a statement. In those cases, the reference point is assumed implicitly, usually to
refer to a “ground” or common point in an electrical circuit.
At the atomic level charges may become separated. In some molecules, such as salts like
sodium chloride, the electronegativity of one atom (chloride) is so much greater than
that of the other (sodium) that in a covalent atomic bond between these elements the
electron or electrons are almost completely transferred from one atom to the other.
Such bonds are dissociated easily in aqueous solution so that the individual atoms now
become “ions” or charged particles. In water, the atoms of salts appear in ionic form, so
that atoms of sodium, potassium, chloride, magnesium and many others move relatively
freely of their oppositely charged complement. Not only atoms, but also molecules, can
exist in ionic form, and many proteins, for example, carry a net negative charge. Of
course some ions may be quite large and there may be physical impediments to their
motion that result in different bulk properties for ions and small charges, such as
electrons. These effects are significant in some circumstances, but in most of the
 discussion that follows, and throughout most of this book, we can consider the
properties of ions interchangeably with the properties of charge.
Current and Resistance
The motion of charge is known as current; specifically, the current, i, is equal to the
change in charge, Q, with time, so that:

Where V is the Voltage, i is the current, and R the resistance. Materials whose resistance
is extremely high are termed insulators and those whose resistance is low are called,
conductors. Good insulators may have resistance of gigaOhms (109 Ohms) or more,
whereas good conductors, such as copper wire, will have resistance of microOhms. More
accurately, we refer to resistivity, which is the measured resistance normalized by the
area and length of a conductor, so that it is a material property. Most biological
materials fall in a more intermediate range with resistances of thousands to millions of
Ohms. In a perfect conductor, where the resistance is zero, the voltage at all points along
the conductor is identical. In general, moving charge from a source of higher potential
energy to lower (current flowing from positive to negative ends of a source) must result
in energy dissipation. Resistors dissipate this energy as heat.

mud pump





mud motor





mud motor parts





Mud Check test



Mud Check  test



centralizers

centralizers



thickening time test for cement

cement lap thickening time test for cement



simple oil separator


separation if oil and gas
simple oil separator Production petroleum

Firoozabadi Abbas - Thermodynamic of Hydrocarbon Reservoir free download


download from here 


Firoozabadi Abbas - Thermodynamic of Hydrocarbon Reservoir