lecture 12 (DD At The Rigsite)

DD at the Rigsite 

About this chapter
The DD has other rig-site responsibilities not directly related to drilling. These include
keeping an accurate inventory of the DD tools. The logistics involved in getting
equipment to and from the rig-site varies, depending on the location. it is vital that the
DD keep the various reports up to date. This information is needed by the location
manager and, often, the unit technical manager.
Finally, knowing the rig-site politics and abiding by the rules makes the DD job run
much more smoothly than otherwise. The degree to which the DD is "his own boss"
often depends as much on himself as it does on the client. This chapter highlights the
above.
Objectives of this Chapter
On completing this chapter the directional driller should be able to do the following
exercises:
1. Acquaint himself with the safety procedures of politics.
2. Produce timely and accurate reports.
3. Professionally handle rig-site any location.
4. Control rig-site tool inventory.

12.1 On Arrival at the Rig


On arrival at the rig, the following is a recommended routine.
1. Familiarize yourself with the safety procedures on board (life raft, life boat
assignments, frequency of fire drills and abandon ship drills etc.).
2. Meet the company representative. Discuss briefly the well program. Be aware of the
present operation on the rig. Confirm that there is at least one directional plot on
board (if you’re going to do a blind sidetrack, obviously this does not apply). Put up a
copy of the plot on the wall of the company rep’s office. The anti-collision map
("Spider Plot"), if applicable, is usually updated after each well and shows the
relative positions of the wells drilled to date.
3. Meet the toolpusher. Check that there are sufficient drill collars and HWDP on board
the rig.
4. Meet the driller on tour. If there’s any instructions to be given to him, do it now. For
instance, if he’s drilling down to the kickoff point, he will need to be informed if a
multishot survey will be taken prior to POOH, the composition of the next BHA etc.
5. Attend safety meeting with the other Anadrill cell members, if applicable.
6. Do a complete inventory of the directional tools. It is advisable to caliper everything
as you check them. The serial numbers of every tool must be recorded. While it takes
a few hours to caliper everything properly, a lot of the tools (apart from those that
will be re-cut and new tools that arrive) will only need to be calipered once in the
course of a project. Thus, it’s important to do it properly the first time.

7. Use a check-list. If there’s any tool obviously missing, check that it has been ordered.
Call the Anadrill office if necessary. Also check for damaged threads and shoulders.
Check the D+C hours already on the mud motors, if a different Anadrill DD was on
the rig most recently.
8. On a new job (e.g. multiwell platform) which is expected to last several months or
more, it is advisable to get a rack fabricated by the welder to hold all the subs,
stabilizers and, possibly, short collars. This minimizes the space occupied by the DD
tools. It also helps protect the tools, makes them easy to find and easy to pick up/lay
down.

  Note

Permission must be gotten from the toolpusher before the tool rack is made. He will
normally coordinate the fabrication of the rack with the welder. The DD can make
design suggestions. To store stabilizer sleeves, an area should be found which is big
enough to allow gauging of the sleeves as required. The remaining tools (e.g. mud
motors, NMDCs, EQ Jars and possibly short collars) are normally kept in the drill collar
bay.


9. Fill out a DD inventory sheet. Give a copy to the company representative. Post one
copy in the doghouse to facilitate the driller’s BHA paperwork.
10. Check all the survey instrument kits systematically (gyro and/or magnetic, singleshot
and/or multishot). Run a check shot for confirmation. Take a short multishot test
film, if applicable. Order any necessary missing equipment from the base. If you will
be using the rig floor power supply (e.g. in case of gyro), ensure that the voltages are
compatible.
11. Check all the survey running gear. Make up the complete mule shoe orienting barrel
assembly. Make up the bottom-landing shock absorber assembly also. If it’s a hot
hole, ensure that the long protective barrel is at the rig-site.
12. The running gear which might be needed during the course of the well is normally
stored on a rack behind the drawworks. Ensure the storage place is dry and clean.
13. Excess running gear should be stored in the steel box in which it arrived on the rig.
14. Check the rig equipment. Ensure the slick line unit is in good condition and that
there is sufficient line on the drum. Watch out for “kinks" in the slick line. It is
recommended to get the driller/assistant driller to cut off some slick line before
attaching the upper part of the single-shot running gear.
15. Familiarize yourself with the driller's console. Check that there are adequate sensors
operational and that there is nothing obviously wrong with the drill-floor equipment
from a DD viewpoint.
16. Run the GEOMAG program, in conjunction with the MWD engineer. Otherwise, use
Zone maps to determine the number of NMDCs needed in the BHAs in this well.
17. If on a multiwell platform, or close to other wells, ensure that the surface coordinates
of the well to be drilled (referenced to the fixed origin) are entered in the Advisor
and/or Macintosh so that the anti- collision program can be run later.

18. Set up survey files on the Advisor and/or Macintosh for the well to be drilled. If any
TOTCO surveys have already been taken, they should be entered in the file(s). Prior
to running a multishot survey in a nominally- vertical hole, TOTCO survey data
allows the DD to choose the appropriate compass/angle unit.


12.2 General DD duties as the well progresses


1. Ensure that the drilling supervisor is kept up to date on the progress of the well from
a DD standpoint. He must be informed of your intentions to change the BHA If a
correction run is required, the DD should explain why. He should also make
recommendations as to when the correction should be done. Sometimes a target
extension is the better option. That decision is made by the client.
2. Ensure that the driller and assistant driller is given a copy of the next BHA in good
time. Mark all the tools to be picked up. Ensure no unnecessary lost rig time occurs
because of confusion over BHA components.
3. Have good communication with the drillers. Drilling parameters usually have to be
changed regularly.
4. Surveys should be taken as necessary. Give the updated survey calculation sheet to
the drilling supervisor promptly.
5. During a kickoff, it is not always easy to have time to plot all the surveys. A good
DD will know how the kickoff is progressing without having to plot every survey.
The desired hole direction is known. It is very easy to calculate whether or not the
build-up rate achieved is "keeping up with the program".
6. Even during the kickoff, each survey should be calculated promptly and given to the
company representative. Where Anadrill’s MWD tool is in use, this is usually taken
care of by the MWD engineer on the Advisor. If there is a Macintosh on board,
MacDD Survey file should be updated by the DD as time allows.
7. When the kickoff is almost finished, it s necessary to plot a few surveys. After the
kickoff, plot the latest survey position on the DD plot promptly. Project ahead. use
BHA history from previous wells in the area to help in decision-making.
8. Keep all DD paperwork up to date. Consumables, run charges, personnel charges
(where applicable) should be noted on the Anadrill Daily Drilling Report. All other
relevant forms - Mud Motor Report, Survey Calculations & Analysis, BHA Analysis,
Steerable Report, DD Tool Inventory etc. should be comprehensively filled out.
9. Perform basic maintenance on UBHO subs, Roller Reamers, stabilizer sleeves etc.
10. Underreamers and Hole Openers should be stored in an oil bath (usually a length of
casing which is filled with oil) when not in use.
11. Survey instrument kit should be kept in the quarters (in cases where MWD tools are
in use) or in the driller’s dog-house (provided it’s clean and secure).
12. The DD should be on the drill floor when EQ Jars or Shock Guard is being picked up
or laid down. Ensure the Jack Nut (if applicable) is screwed down torqued to correct
value before RIH.
13. It’s advisable to be on the drill floor when the driller’s change tour. Don’t rely on the
driller to relay your instructions to his relief.

14. Ensure that the company representative has up-to-date survey information on his
desk at report time. He shouldn’t have to come looking for survey calculation data!
15. Grading of the bits is often a joint effort between the DD and the driller
.


12.3 Location Politics

The DD has a responsible and rewarding job at the rig-site. However, there are some
minefields which, if not avoided, can lead to major problems for the DD. Some advice
and guidelines are listed below.
1. Anadrill is a service company. We work to please the client. The service quality
which we provide will make us a major force in directional drilling.
2. Drilling of a directional well is a joint effort between the client and the DD
company. From the preplanning stage to the actual drilling of a directional well, the
plan may be changed several times. However, once the final plan is agreed, it is up to
the people on the rig to make their contribution to a successful well.
3. The amount of authority that the DD actually has at the wellsite depends on several
factors:
·  The level of experience and competence of the DD.
·  The level of confidence the client has in the particular DD. This is often based
on the previous performance of the DD.
·  The amount of experience the client has in drilling directional wells.
·  The amount of control the drilling superintendent wishes to have over BHA
selection etc.
·  Whether or not the company representative is a former DD or at least has a good
knowledge of DD techniques.
4. Some DDs like to make all the decisions involved in drilling a directional well -
amount of lead angle, BHA composition, deciding on when to do a correction run,
choosing drilling parameters, possibly specifying bits. This is fine, provided the
client is happy with this arrangement. However, a situation should never arise where
the DD oversteps his authority. There are many clients who make all the major DD
decisions for the DD. In such a case, the DD is merely someone who makes up
BHAs, steers a mud motor, calculates surveys and keeps the DD plot up to date. Lots
of DDs are happy with this arrangement. Some are not. They would be better suited
to a DD job where they had more autonomy. Ideally, the DD and the client together
should make a lot of the decisions.
5. It is important to keep the Anadrill manager/supervisor informed of the progress of
the well.
6. If there is a disagreement between the DD and the company representative over a
decision related to DD (e.g. BHA composition) it may be necessary to
(confidentially) call the Anadrill manager/supervisor and inform him of the situation.
Try not to be made a scapegoat for something you never did!

7. The DD should ensure that he is not "caught in the middle” between the geologist
and the drilling supervisor. Unless told otherwise, the DD always should follow
instructions from the drilling supervisor only. Any internal disagreement between the
drilling supervisor and the geologist is no concern of the DD.
8. If possible, it is advisable to be present when the drilling supervisor makes his
morning phone report to the drilling superintendent. Some input may be needed from
the DD, e.g. When is the next BHA change planned ? Is a correction run likely ? Is a
request for a target extension imminent?
9. As mentioned earlier in this manual, if a mud pump needs repair while ROP is high
(particularly in larger hole sizes at shallow depths), the DD should recommend that
drilling cease until the pump is back on line. This may not suit the toolpusher, as it
increases the rig down-time. However, drilling with insufficient annular velocity can
lead to serious hole problems later.
10. On returning to base after the job, the DD would be well advised to visit the drilling
superintendent and thus "close the loop". A short discussion on the well just drilled
might lead to a slightly different approach to drilling the next well. This will,
hopefully, lead to increased drilling efficiency.

Known to the waterfall the largest and most beautiful in Europe

What we see in the picture is one of the largest waterfalls in Iceland is not only made ​​by people in Europe but also in the so-called "Dettifoss" or "raging waterfall", with an average consumption of this waterfall of water to 500 cubic meters per second.

This results from the large amount of water is fantastic for landscape beauty of a waterfall waterfall not far from the beauty of Niagara Falls.

Is Europe's largest waterfall in the northeast of Iceland on the river bearing the name "unpronounceable Yekulsau".

The width of the waterfall about 100 meters, and height of 44 m, near the beautiful waterfall there is a lake of volcanic origin.

Who stands next to the waterfall Bmtabat feel under his feet, and the voice of strong noise due to the amount of water flowing from the waterfall.





Weather also did not see before ...

Instability, weather terrible and frightening shots ... These images may take us to the world of second ... World that we see every day ... Shows us a world of terrifying other aspect of a different nature.

Although these images may seem frightening at first glance, they kidnapped the breathtaking splendor of the severity of the storms made ​​the stalker Mike risks his life to capture the moments will not be repeated ...











Pretty pictures: When the sky glow a fire




Sunset paintings of the most beautiful paintings that made ​​creative Almighty ... Smekd filled with red and bloody as hell and has priced ...

These images are the sunsets in the state of California .. Difficult to capture the true colors of the sunset and the photos below is a set of pictures had been taken on the same day and with the same camera through which we have seen gradual change of color of the sky where the sun disappears for the night falls in place.










Amazing Pics: Mars also did not see before

We all know dear planet Earth, either through normal images or images taken by NASA ... But do you see from the images of planets other than Earth Mother?!!!

The Dutch creative bag converts images of Mars taken by the gloomy and by NASA satellites to different vivid images full of color and beauty accredited program for images so-called Terragen.

We've gathered together different images and amazing of the red planet Mars in the various chapters and the various cases is (covered with water and covered with snow)










APPROVED DRUG PRODUCTS free download





CONTENTS

PREFACE TO THIRTY SECOND EDITION………… ………… …………
..…................
iv
2
HOW TO USE THE DRUG PRODUCTS LISTS
..............................................................
2-1
2.1
Key Sections for Using the Drug Product Lists …………………….….………………
......
2-1
2.2
Drug Product Illustration ……………………………………………
..….…………….……..
2-3
2.3
Therapeutic Equivalence Evaluations Illustration ………………….….…………..………2-4 DRUG PRODUCT LISTS
Prescription Drug Product List ……………………………………….…………….………………
...
3-1
OTC Drug Product List ……………………………………………….…………….…………………4-1
Drug Products with Approval under Section 505 of the Act Administered
Drug Products Which Must Demonstrate in vivo Bioavailability
by the Center for Biologics Evaluation and Research List
...……….…….………………...
5-1
Discontinued Drug Product List .…………………………………………….…….………………
....
6-1
Orphan Products Designations and Approvals List …………….………….…….………………
..
7-1
Only if Product Fails to Achieve Adequate Dissolution …………………
..………………………..
8-1
APPENDICES
A.
Product Name Index ……….…...………………………….………..……………………A-1 B. Product Name Index Listed by Applicant ………………….……
..……………………..
B-1
C.
Uniform Terms …………………………………………….………
..…………...………...
C-1
PATENT AND EXCLUSIVITY INFORMATION ADDENDUM ……….……..………………..........AD1
A.
Patent and Exclusivity Lists …………………………….…
..……..……………..……ADA1
B.
Patent and Exclusivity Terms
...……………………….….………...…………………ADB1

Freezing

Freezing is the unit operation in which the temperature of a food is reduced below its
freezing point and a proportion of the water undergoes a change in state to form ice
crystals. The immobilisation of water to ice and the resulting concentration of dissolved
solutes in unfrozen water lower the water activity (aw) of the food (aw is described in
Chapter 1). Preservation is achieved by a combination of low temperatures, reduced
water activity and, in some foods, pre-treatment by blanching. There are only small
changes to nutritional or sensory qualities of foods when correct freezing and storage
procedures are followed.
The major groups of commercially frozen foods are as follows:
• fruits (strawberries, oranges, raspberries, blackcurrants) either whole or pure´ed, or as
juice concentrates
• vegetables (peas, green beans, sweetcorn, spinach, sprouts and potatoes)
• fish fillets and seafoods (cod, plaice, shrimps and crab meat) including fish fingers,
fish cakes or prepared dishes with an accompanying sauce
• meats (beef, lamb, poultry) as carcasses, boxed joints or cubes, and meat products
(sausages, beefburgers, reformed steaks)
• baked goods (bread, cakes, fruit and meat pies)
• prepared foods (pizzas, desserts, ice cream, complete meals and cook–freeze dishes).
Rapid increases in sales of frozen foods in recent years are closely associated with
increased ownership of domestic freezers and microwave ovens. Frozen foods and chilled
foods (Chapter 19) have an image of high quality and ‘freshness’ and, particularly in
meat, fruit and vegetable sectors, outsell canned or dried products.
Distribution of frozen foods has a relatively high cost, due to the need to maintain a
constant low temperature. Distribution logistics are discussed further in Chapter 19 in
relation to chilled foods and in Chapter 26. A recent advance in distribution of chilled
and frozen foods is described by Jennings (1999), in which carbon dioxide ‘snow’
(Section 21.2.4) is added to sealed containers of food, which are then loaded into
normal distribution vehicles. The time that a product can be held at the required chilled
or frozen storage temperature can be varied from four to 24 hours by adjusting the
amount of added snow. Other advantages of the system include greater flexibility in
being able to carry mixed loads at different temperatures in the same vehicle, greater
control over storage temperature and greater flexibility in use, compared to standard
refrigerated vehicles.
21.1 Theory
During freezing, sensible heat is first removed to lower the temperature of a food to the
freezing point. In fresh foods, heat produced by respiration is also removed (Chapter 19).
This is termed the heat load, and is important in determining the correct size of freezing
equipment for a particular production rate. Most foods contain a large proportion of water
(Table 21.1), which has a high specific heat (4200 J kg 1 K 1) and a high latent heat of
crystallisation (335 kJ kg 1). A substantial amount of energy is therefore needed to
remove latent heat, form ice crystals and hence to freeze foods. The latent heat of other
components of the food (for example fats) must also be removed before they can solidify
but in most foods these other components are present in smaller amounts and removal of
a relatively small amount of heat is needed for crystallisation to take place. Energy for
freezing is supplied as electrical energy, which is used to compress gases (refrigerants) in
mechanical freezing equipment (Sections 21.2.1–3) or to compress and cool cryogens
(Section 21.2.4).
If the temperature is monitored at the thermal centre of a food (the point that cools
most slowly) as heat is removed, a characteristic curve is obtained (Fig. 21.1).
The six components of the curve are as follows.


AS        The food is cooled to below its freezing point f which, with the exception of
pure water, is always below 0ºC (Table 21.1). At point S the water remains
liquid, although the temperature is below the freezing point. This phenomenon is
known as supercooling and may be as much as 10ºC below the freezing point.


SB         The temperature rises rapidly to the freezing point as ice crystals begin to form
and latent heat of crystallisation is released.


BC           Heat is removed from the food at the same rate as before, but it is latent heat
being removed as ice forms and the temperature therefore remains almost
constant. The freezing point is gradually depressed by the increase in solute
concentration in the unfrozen liquor, and the temperature therefore falls slightly.
It is during this stage that the major part of the ice is formed (Fig. 21.2).


CD      One of the solutes becomes supersaturated and crystallises out. The latent heat
of crystallisation is released and the temperature rises to the eutectic temperature
for that solute (Section 21.1.2).


















DE        Crystallisation of water and solutes continues. The total time tf taken (the
freezing plateau) is determined by the rate at which heat is removed.
EF         The temperature of the ice–water mixture falls to the temperature of the freezer.
A proportion of the water remains unfrozen at the temperatures used in
commercial freezing; the amount depends on the type and composition of the
food and the temperature of storage. For example at a storage temperature of
20ºC the percentage of water frozen is 88% in lamb, 91% in fish and 93% in
egg albumin.

Food Processing Technology Principles and Practice 2nd Edition (P. Fellows) free download









Contents


Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix
List of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii
List of acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxx
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
The food industry today . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
About this book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Note on the second edition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
PART I BASIC PRINCIPLES 7
1 Properties of foods and processing theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1 Properties of liquids, solids and gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.1 Density and specific gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.2 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.3 Surface activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.4 Rheology and texture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2 Material transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3 Fluid flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.1 Fluid flow through fluidised beds . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.4 Heat transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.4.1 Energy balances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.4.2 Mechanisms of heat transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.4.3 Sources of heat and methods of application to foods . . . . . . . 37
1.4.4 Energy conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.4.5 Effect of heat on micro-organisms . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.4.6 Effect of heat on nutritional and sensory characteristics . . . . 43
1.5 Water activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.5.1 Effect of aw on foods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.6 Effects of processing on sensory characteristics of foods . . . . . . . . . . . 48

1.6.1 Texture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
1.6.2 Taste, flavour and aroma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
1.6.3 Colour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
1.7 Effects of processing on nutritional properties . . . . . . . . . . . . . . . . . . . . . . 50
1.8 Food safety, good manufacturing practice and quality assurance . . . 52
1.8.1 HACCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
1.8.2 Hurdle technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
1.9 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
1.10 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2 Process control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.1 Automatic control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.1.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.1.2 Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.2 Computer-based systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.2.1 Programmable logic controllers (PLCs) . . . . . . . . . . . . . . . . . . . . 72
2.2.2 Types of control systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.2.3 Software developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.2.4 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.3 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
PART II AMBIENT-TEMPERATURE PROCESSING 81
3 Raw material preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.1 Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.1.1 Wet cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.1.2 Dry cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.1.3 Removing contaminants and foreign bodies . . . . . . . . . . . . . . . . 85
3.2 Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.2.1 Shape and size sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.2.2 Colour sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.2.3 Weight sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.3 Grading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.4 Peeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.4.1 Flash steam peeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.4.2 Knife peeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.4.3 Abrasion peeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.4.4 Caustic peeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.4.5 Flame peeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4 Size reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.1 Size reduction of solid foods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.1.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.1.2 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.1.3 Effect on foods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.2 Size reduction in liquid foods (emulsification and homogenisation) 110
4.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.2.2 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.2.3 Effect on foods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.3 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5 Mixing and forming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.1 Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.1.1 Theory of solids mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.1.2 Theory of liquids mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.1.3 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.1.4 Effect on foods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.2 Forming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.2.1 Bread moulders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.2.2 Pie and biscuit formers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.2.3 Confectionery moulders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.3 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6 Separation and concentration of food components . . . . . . . . . . . . . . . . . . . . 140
6.1 Centrifugation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.1.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.1.2 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.2 Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.2.2 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.3 Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.3.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.3.2 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.4 Extraction using solvents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.4.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.4.2 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.5 Membrane concentration (hyperfiltration and ultrafiltration) . . . . . . . . 157
6.5.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.5.2 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.6 Effect on foods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7 Fermentation and enzyme technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.1 Fermentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.1.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.1.2 Types of food fermentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.1.3 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.1.4 Effect on foods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.2 Enzyme technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.2.1 Enzyme production from micro-organisms . . . . . . . . . . . . . . . . . 186
7.2.2 Application of enzymes in food processing . . . . . . . . . . . . . . . . . 187
7.3 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
8 Irradiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
8.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
8.2 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
8.2.1 Measurement of radiation dose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
8.2.2 Dose distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
8.3 Effect on micro-organisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
8.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
8.4.1 Sterilisation (or ‘radappertisation’) . . . . . . . . . . . . . . . . . . . . . . . . . 202
8.4.2 Reduction of pathogens (or ‘radicidation’) . . . . . . . . . . . . . . . . . 202
8.4.3 Prolonging shelf life (or ‘radurisation’) . . . . . . . . . . . . . . . . . . . . 202
8.4.4 Control of ripening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
8.4.5 Disinfestation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
8.4.6 Inhibition of sprouting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
8.5 Effect on foods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
8.5.1 Induced radioactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
8.5.2 Radiolytic products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
8.5.3 Nutritional and sensory value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
8.6 Effect on packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
8.7 Detection of irradiated foods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
8.7.1 Physical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
8.7.2 Chemical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
8.7.3 Biological methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
8.8 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
8.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
9 Processing using electric fields, high hydrostatic pressure, light or
ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
9.1 Pulsed electric field processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
9.1.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
9.1.2 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
9.2 High pressure processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
9.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
9.2.2 Processing and equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
9.2.3 Effect on micro-organisms, enzymes and food components 221
9.3 Processing using pulsed light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
9.3.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
9.3.2 Equipment and operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
9.3.3 Effect on micro-organisms and foods . . . . . . . . . . . . . . . . . . . . . . 223
9.4 Processing using ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
9.4.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
9.4.2 Application to processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
9.5 Other methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
9.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226