A review of basic principles of electricity & physics lec (2)

Kirchhoff’s Laws

The path by which charge may flow between the positive and negative ends of a source
of Voltage or charge is known as a circuit. Sources of current, Voltage, and resistance to
current flow are presented in a set of standard symbols that are connected together in
circuit diagrams. In such diagrams, lines represent perfect, zero resistance, conductors.
Figure A1.01 shows these standard pictures. By convention, current is said to move from
positive to negative potentials and would imply the motion of positive charges (in
actuality, most currents in man made devices result from the motion of negative
charge). Circuit diagrams frequently use arrows to indicate the direction of current flow.
In the figure, note that the current out from the top, or positive end, of the Voltage
source is identical to the current in to the bottom. The same is true of the resistor in the
circuit and indeed in any element of a circuit: The current flow in is identical to the
current flow out. This general behavior of nodes in a circuit is known as Kirchhoff’s
current law (KCL).





Kirchhoff’s current law has an analog (referred to as a “dual”) in describing Voltage
differences in circuits. Kirchhoff’s Voltage law (KVL) states that the sum of the Voltage
differences around any closed loop in a circuit must be equal to zero. In applying KVL
you must pay attention to the direction you travel in the loop, as discussed below.
Series and Parallel Connections
When electrical elements are attached end-to-end they are connected “in series”, when
the current inputs and outputs of multiple elements are held in common, the devices are
connected in parallel. Figure A1.02 shows resistors connected to a Voltage source in
series and in parallel. In the series circuit, KCL tells us that the current through all three
devices is identical, while KVL informs us that the Voltages V1 and V2 have a sum equal
to Vs. Applying KCL to the parallel circuit we see that at the two nodes, i1 + i2 = i. KVL
tells us that traveling starting at the top and going clockwise around the loop that
includes R1 and R2, V2 – V1 = 0 and that V2 = V1. Likewise, in the loop made up of Vs
and V2, V2 – Vs = 0, implying that V2 = Vs. The two Kirchhoff’s laws, in combination, are
extremely powerful organizing principles. Understanding them makes it possible to
model the behavior of the overwhelming majority of electrical circuits and devices.

Clearly, when the resistors are in series the same current flows through each. By Ohm’s
law, the voltage across R1 is equal to iR1, and the Voltage that appears across R2 is iR2.
The Voltage that appears across the Voltage source is therefore the sum of the Voltages
across each resistor, or i(R1 + R2) (Note that this is the same as the expression of KVL
for this circuit: Vs = V1 + V2. The total resistance experienced by the Voltage source in
the series circuit is thus the sum of the individual resistors: resistance in series is the
sum of the individual resistances.
In the parallel circuit, there are two paths for current to go through the resistors. Not
surprisingly more current flows through the lower resistance path, and we can compute
the individual currents by Ohm’s law. Because the Voltage (V1 and V2) across these
resistors is identical (they are connected by perfect conductors), the current, i1 in R1 is
V/R1 and i2 is V/R2. By KCL, the total current that flows from the Voltage source is
equal to the sum of the currents through the two resistors:.

which is always less than either of the resistors alone.

A review of basic principles of electricity & physics lec (1)



Introduction
While this book is not intended as a comprehensive course in electricity and magnetism
there are a few principles that are so ubiquitous in functional magnetic resonance that
they appear repeatedly throughout this text and therefore warrant this brief overview.
Charge
Electrical charge is considered to be a fundamental property of materials. Physicists
recognize that charge exists in only two forms, positive and negative, and that it is
quantal in nature, with the smallest amount of charge being that of a single electron or
proton, each being exactly 1 unit of negative or positive charge, respectively. A single
unit of charge is extremely small, of course, and charge is more commonly measured in
units of Coulombs, equivalent to about 6.242 X 1018 unit charges. Positive and negative
charges exhibit a strong attractive force, whose magnitude is proportional inversely to
the square root of the distance that separates them. In its most stable state, bulk matter
has a net charge of zero, meaning that it contains an identical number of positive and
negative charges.
Voltage
When charges become separated by distance, the presence of an attractive force between
implies an increase in potential energy, which is released when the charges are moved
together. This energy difference is known as Voltage and is measured, naturally, in
Volts. Because the potential energy of the Voltage is also measure of the force that would
tend to move the charge, it is known also as the potential difference, or simply the
potential, the “electromotive force” or the e.m.f. and these terms are used
interchangeably, which can at times be confusing. Batteries are familiar voltage sources
that rely on chemical means to store potential energy. For convenience, the units of
Volts are defined in terms of other fundamental physical constants and units. One
Joule of work is required to move one Coulomb of charge through a potential difference
of 1 Volt. In practice, this means that a Coulomb is actually defined to set unit values of
Volts and Joules. Voltage must always refer to the energy difference between two points.
It is never actually correct to discuss the Voltage at a point, though you will often see
such a statement. In those cases, the reference point is assumed implicitly, usually to
refer to a “ground” or common point in an electrical circuit.
At the atomic level charges may become separated. In some molecules, such as salts like
sodium chloride, the electronegativity of one atom (chloride) is so much greater than
that of the other (sodium) that in a covalent atomic bond between these elements the
electron or electrons are almost completely transferred from one atom to the other.
Such bonds are dissociated easily in aqueous solution so that the individual atoms now
become “ions” or charged particles. In water, the atoms of salts appear in ionic form, so
that atoms of sodium, potassium, chloride, magnesium and many others move relatively
freely of their oppositely charged complement. Not only atoms, but also molecules, can
exist in ionic form, and many proteins, for example, carry a net negative charge. Of
course some ions may be quite large and there may be physical impediments to their
motion that result in different bulk properties for ions and small charges, such as
electrons. These effects are significant in some circumstances, but in most of the
 discussion that follows, and throughout most of this book, we can consider the
properties of ions interchangeably with the properties of charge.
Current and Resistance
The motion of charge is known as current; specifically, the current, i, is equal to the
change in charge, Q, with time, so that:

Where V is the Voltage, i is the current, and R the resistance. Materials whose resistance
is extremely high are termed insulators and those whose resistance is low are called,
conductors. Good insulators may have resistance of gigaOhms (109 Ohms) or more,
whereas good conductors, such as copper wire, will have resistance of microOhms. More
accurately, we refer to resistivity, which is the measured resistance normalized by the
area and length of a conductor, so that it is a material property. Most biological
materials fall in a more intermediate range with resistances of thousands to millions of
Ohms. In a perfect conductor, where the resistance is zero, the voltage at all points along
the conductor is identical. In general, moving charge from a source of higher potential
energy to lower (current flowing from positive to negative ends of a source) must result
in energy dissipation. Resistors dissipate this energy as heat.

mud pump





mud motor





mud motor parts





Mud Check test



Mud Check  test



centralizers

centralizers



thickening time test for cement

cement lap thickening time test for cement



simple oil separator


separation if oil and gas
simple oil separator Production petroleum

Firoozabadi Abbas - Thermodynamic of Hydrocarbon Reservoir free download


download from here 


Firoozabadi Abbas - Thermodynamic of Hydrocarbon Reservoir

Automatic Control Systems BENJAMIN C[1] KUO




Complex-Variable Theory


Functions of a Complex Variable
Singularities and Poles of a Function
Differential and Difference Equations
Linear Ordinary Differential Equations
The state of a system
refers to the past, present,
and future of the system.

Elementary Matrix Theory and Algebra
COMPUTER-AIDED SOLUTIONS OF MATRICES
Laplace Transform Table
Operational Amplifiers
First-Order Op-Amp Configurations
Properties and Construction
of the Root Loci

Saddle Points) on the Root Loci
Frequency-Domain Plots
General Nyquist Criterion
Discrete-Data Control Systems
z-Transform Table

Askeland English version The science and engineering of materials


Askeland English version The science and engineering of materials free download

Callister Materials Science and Engineering free download










MATERIALS SCIENCE AND ENGINEERING
Sometimes it is useful to subdivide the discipline of materials science and engineering
into materials science and materials engineering subdisciplines. Strictly
speaking, “materials science” involves investigating the relationships that exist
between the structures and properties of materials. In contrast, “materials engineering”
is, on the basis of these structure–property correlations, designing or engineering
the structure of a material to produce a predetermined set of properties.2
From a functional perspective, the role of a materials scientist is to develop or synthesize
new materials, whereas a materials engineer is called upon to create new
products or systems using existing materials, and/or to develop techniques for processing
materials. Most graduates in materials programs are trained to be both
materials scientists and materials engineers.
“Structure” is at this point a nebulous term that deserves some explanation. In
brief, the structure of a material usually relates to the arrangement of its internal
components. Subatomic structure involves electrons within the individual atoms and
interactions with their nuclei. On an atomic level, structure encompasses the organization
of atoms or molecules relative to one another.The next larger structural
realm, which contains large groups of atoms that are normally agglomerated together,
is termed “microscopic,” meaning that which is subject to direct observation
using some type of microscope. Finally, structural elements that may be viewed with
the naked eye are termed “macroscopic.”
The notion of “property” deserves elaboration.While in service use, all materials
are exposed to external stimuli that evoke some type of response. For example,
a specimen subjected to forces will experience deformation, or a polished metal
surface will reflect light. A property is a material trait in terms of the kind and magnitude
of response to a specific imposed stimulus. Generally, definitions of properties
are made independent of material shape and size.
Virtually all important properties of solid materials may be grouped into six different
categories: mechanical, electrical, thermal, magnetic, optical, and deteriorative.
For each there is a characteristic type of stimulus capable of provoking different responses.
Mechanical properties relate deformation to an applied load or force; examples
include elastic modulus and strength. For electrical properties, such as electrical
conductivity and dielectric constant, the stimulus is an electric field. The thermal behavior
of solids can be represented in terms of heat capacity and thermal conductivity.
Magnetic properties demonstrate the response of a material to the application of
a magnetic field. For optical properties, the stimulus is electromagnetic or light radiation;
index of refraction and reflectivity are representative optical properties. Finally,
deteriorative characteristics relate to the chemical reactivity of materials.The chapters
that follow discuss properties that fall within each of these six classifications.
In addition to structure and properties, two other important components are
involved in the science and engineering of materials—namely, “processing” and
“performance.”With regard to the relationships of these four components, the structure
of a material will depend on how it is processed. Furthermore, a material’s performance
will be a function of its properties. Thus, the interrelationship between
processing, structure, properties, and performance is as depicted in the schematic
illustration shown in Figure 1.1. Throughout this text we draw attention to the
contents

LIST OF SYMBOLS xxiii
1. Introduction 1
Learning Objectives 2
1.1 Historical Perspective 2
1.2 Materials Science and Engineering 3
1.3 Why Study Materials Science and Engineering? 5
1.4 Classification of Materials 5
1.5 Advanced Materials 11
1.6 Modern Materials’ Needs 12
References 13
2. Atomic Structure and Interatomic Bonding 15
Learning Objectives 16
2.1 Introduction 16
ATOMIC STRUCTURE 16
2.2 Fundamental Concepts 16
2.3 Electrons in Atoms 17
2.4 The Periodic Table 23
ATOMIC BONDING IN SOLIDS 24
2.5 Bonding Forces and Energies 24
2.6 Primary Interatomic Bonds 26
2.7 Secondary Bonding or van der Waals Bonding 30
2.8 Molecules 32
Summary 34
Important Terms and Concepts 34
References 35
Questions and Problems 35
3. The Structure of Crystalline Solids 38
Learning Objectives 39
3.1 Introduction 39
CRYSTAL STRUCTURES 39
3.2 Fundamental Concepts 39
3.3 Unit Cells 40
3.4 Metallic Crystal Structures 41
3.5 Density Computations 45
3.6 Polymorphism and Allotropy 46
3.7 Crystal Systems 46
CRYSTALLOGRAPHIC POINTS, DIRECTIONS, AND
PLANES 49
3.8 Point Coordinates 49
3.9 Crystallographic Directions 51
3.10 Crystallographic Planes 55
3.11 Linear and Planar Densities 60
3.12 Close-Packed Crystal Structures 61
CRYSTALLINE AND NONCRYSTALLINE
MATERIALS 63
3.13 Single Crystals 63
3.14 Polycrystalline Materials 64
3.15 Anisotropy 64
3.16 X-Ray Diffraction: Determination of
Crystal Structures 66
3.17 Noncrystalline Solids 71
Summary 72
Important Terms and Concepts 73
References 73
Questions and Problems 74
4. Imperfections in Solids 80
Learning Objectives 81
4.1 Introduction 81
POINT DEFECTS 81
4.2 Vacancies and Self-Interstitials 81
4.3 Impurities in Solids 83
4.4 Specification of Composition 85
MISCELLANEOUS IMPERFECTIONS 88
4.5 Dislocations–Linear Defects 88
4.6 Interfacial Defects 92
4.7 Bulk or Volume Defects 96
4.8 Atomic Vibrations 96
MICROSCOPIC EXAMINATION 97
4.9 General 97
4.10 Microscopic Techniques 98
4.11 Grain Size Determination 102
Summary 104
Important Terms and Concepts 105
References 105
Questions and Problems 106
Design Problems 108
5. Diffusion 109
Learning Objectives 110
5.1 Introduction 110
5.2 Diffusion Mechanisms 111
5.3 Steady-State Diffusion 112
5.4 Nonsteady-State Diffusion 114
5.5 Factors That Influence Diffusion 118
5.6 Other Diffusion Paths 125
Summary 125
Important Terms and Concepts 126
References 126
Questions and Problems 126
Design Problems 129
6. Mechanical Properties of Metals 131
Learning Objectives 132
6.1 Introduction 132
6.2 Concepts of Stress and Strain 133
ELASTIC DEFORMATION 137
6.3 Stress-Strain Behavior 137
6.4 Anelasticity 140
6.5 Elastic Properties of Materials 141
PLASTIC DEFORMATION 143
6.6 Tensile Properties 144
6.7 True Stress and Strain 151
6.8 Elastic Recovery after Plastic
Deformation 154
6.9 Compressive, Shear, and Torsional
Deformation 154
6.10 Hardness 155
PROPERTY VARIABILITY AND DESIGN/SAFETY
FACTORS 161
6.11 Variability of Material Properties 161
6.12 Design/Safety Factors 163
Summary 165
Important Terms and Concepts 166
References 166
Questions and Problems 166
Design Problems 172
7. Dislocations and Strengthening
Mechanisms 174
Learning Objectives 175
7.1 Introduction 175
DISLOCATIONS AND PLASTIC
DEFORMATION 175
7.2 Basic Concepts 175
7.3 Characteristics of Dislocations 178
7.4 Slip Systems 179
7.5 Slip in Single Crystals 181
7.6 Plastic Deformation of Polycrystalline
Materials 185
7.7 Deformation by Twinning 185
7.8 Strengthening by Grain Size
Reduction 188
7.9 Solid-Solution Strengthening 190
7.10 Strain Hardening 191
RECOVERY, RECRYSTALLIZATION, AND GRAIN
GROWTH 194
7.11 Recovery 195
7.12 Recrystallization 195
7.13 Grain Growth 200
Summary 201
Important Terms and Concepts 202
References 202
Questions and Problems 202
Design Problems 206
8. Failure 207
Learning Objectives 208
8.1 Introduction 208
FRACTURE 208
8.2 Fundamentals of Fracture 208
8.3 Ductile Fracture 209
8.4 Brittle Fracture 211
8.5 Principles of Fracture Mechanics 215
8.6 Impact Fracture Testing 223
FATIGUE 227
8.7 Cyclic Stresses 228
8.8 The S–N Curve 229
8.9 Crack Initiation and Propagation 232
8.10 Factors That Affect Fatigue Life 234
8.11 Environmental Effects 237
CREEP 238
8.12 Generalized Creep Behavior 238
8.13 Stress and Temperature Effects 239
8.14 Data Extrapolation Methods 241
8.15 Alloys for High-Temperature
Use 242
Summary 243
Important Terms and Concepts 245
References 246
Questions and Problems 246
Design Problems 250
9. Phase Diagrams 252
Learning Objectives 253
9.1 Introduction 253
DEFINITIONS AND BASIC CONCEPTS 253
Contents • xvii
9.2 Solubility Limit 254
9.3 Phases 254
9.4 Microstructure 255
9.5 Phase Equilibria 255
9.6 One-Component (or Unary) Phase
Diagrams 256
BINARY PHASE DIAGRAMS 258
9.7 Binary Isomorphous Systems 258
9.8 Interpretation of Phase Diagrams 260
9.9 Development of Microstructure in
Isomorphous Alloys 264
9.10 Mechanical Properties of Isomorphous
Alloys 268
9.11 Binary Eutectic Systems 269
9.12 Development of Microstructure in
Eutectic Alloys 276
9.13 Equilibrium Diagrams Having
Intermediate Phases or
Compounds 282
9.14 Eutectic and Peritectic Reactions 284
9.15 Congruent Phase
Transformations 286
9.16 Ceramic and Ternary Phase
Diagrams 287
9.17 The Gibbs Phase Rule 287
THE IRON–CARBON SYSTEM 290
9.18 The Iron–Iron Carbide (Fe–Fe3C) Phase
Diagram 290
9.19 Development of Microstructure in
Iron–Carbon Alloys 293
9.20 The Influence of Other Alloying
Elements 301
Summary 302
Important Terms and Concepts 303
References 303
Questions and Problems 304
10. Phase Transformations in Metals:
Development of Microstructure
and Alteration of Mechanical
Properties 311
Learning Objectives 312
10.1 Introduction 312
PHASE TRANSFORMATIONS 312
10.2 Basic Concepts 312
10.3 The Kinetics of Phase
Transformations 313
10.4 Metastable versus Equilibrium
States 324
10.5 Isothermal Transformation Diagrams 325
10.6 Continuous Cooling Transformation
Diagrams 335
10.7 Mechanical Behavior of Iron–Carbon
Alloys 339
10.8 Tempered Martensite 343
10.9 Review of Phase Transformations and
Mechanical Properties for Iron–Carbon
Alloys 346
Summary 350
Important Terms and Concepts 351
References 352
Questions and Problems 352
Design Problems 356
11. Applications and Processing of
Metal Alloys 358
Learning Objectives 359
11.1 Introduction 359
TYPES OF METAL ALLOYS 359
11.2 Ferrous Alloys 359
11.3 Nonferrous Alloys 372
FABRICATION OF METALS 382
11.4 Forming Operations 383
11.5 Casting 384
11.6 Miscellaneous Techniques 386
THERMAL PROCESSING OF METALS 387
11.7 Annealing Processes 388
11.8 Heat Treatment of Steels 390
11.9 Precipitation Hardening 402
Summary 407
Important Terms and Concepts 409
References 409
Questions and Problems 410
Design Problems 411
12. Structures and Properties of
Ceramics 414
Learning Objectives 415
12.1 Introduction 415
CERAMIC STRUCTURES 415
12.2 Crystal Structures 415
12.3 Silicate Ceramics 426
12.4 Carbon 430
12.5 Imperfections in Ceramics 434
12.6 Diffusion in Ionic Materials 438
12.7 Ceramic Phase Diagrams 439
MECHANICAL PROPERTIES 442
12.8 Brittle Fracture of Ceramics 442
12.9 Stress–Strain Behavior 447
12.10 Mechanisms of Plastic
Deformation 449
12.11 Miscellaneous Mechanical
Considerations 451
Summary 453
Important Terms and Concepts 454
References 454
Questions and Problems 455
Design Problems 459
13. Applications and Processing of
Ceramics 460
Learning Objectives 461
13.1 Introduction 461
TYPES AND APPLICATIONS OF
CERAMICS 461
13.2 Glasses 461
13.3 Glass–Ceramics 462
13.4 Clay Products 463
13.5 Refractories 464
13.6 Abrasives 466
13.7 Cements 467
13.8 Advanced Ceramics 468
FABRICATION AND PROCESSING OF
CERAMICS 471
13.9 Fabrication and Processing of Glasses
and Glass–Ceramics 471
13.10 Fabrication and Processing of Clay
Products 476
13.11 Powder Pressing 481
13.12 Tape Casting 484
Summary 484
Important Terms and Concepts 486
References 486
Questions and Problems 486
Design Problem 488
14. Polymer Structures 489
Learning Objectives 490
14.1 Introduction 490
14.2 Hydrocarbon Molecules 490
14.3 Polymer Molecules 492
14.4 The Chemistry of Polymer
Molecules 493
14.5 Molecular Weight 497
14.6 Molecular Shape 500
14.7 Molecular Structure 501
14.8 Molecular Configurations 503
14.9 Thermoplastic and Thermosetting
Polymers 506
14.10 Copolymers 507
14.11 Polymer Crystallinity 508
14.12 Polymer Crystals 512
14.13 Defects in Polymers 514
14.14 Diffusion in Polymeric Materials 515
Summary 517
Important Terms and Concepts 519
References 519
Questions and Problems 519
15. Characteristics, Applications, and
Processing of Polymers 523
Learning Objectives 524
15.1 Introduction 524
MECHANICAL BEHAVIOR OF POLYMERS 524
15.2 Stress–Strain Behavior 524
15.3 Macroscopic Deformation 527
15.4 Viscoelastic Deformation 527
15.5 Fracture of Polymers 532
15.6 Miscellaneous Mechanical
Characteristics 533
MECHANISMS OF DEFORMATION AND FOR
STRENGTHENING OF POLYMERS 535
15.7 Deformation of Semicrystalline
Polymers 535
15.8 Factors That Influence the Mechanical
Properties of Semicrystalline
Polymers 538
15.9 Deformation of Elastomers 541
CRYSTALLIZATION, MELTING, AND GLASS
TRANSITION PHENOMENA IN POLYMERS 544
15.10 Crystallization 544
15.11 Melting 545
15.12 The Glass Transition 545
15.13 Melting and Glass Transition
Temperatures 546
15.14 Factors That Influence Melting and Glass
Transition Temperatures 547
POLYMER TYPES 549
15.15 Plastics 549
15.16 Elastomers 552
15.17 Fibers 554
15.18 Miscellaneous Applications 555
15.19 Advanced Polymeric Materials 556
POLYMER SYNTHESIS AND PROCESSING 560
15.20 Polymerization 561
15.21 Polymer Additives 563
15.22 Forming Techniques for Plastics 565
15.23 Fabrication of Elastomers 567
15.24 Fabrication of Fibers and Films 568
Summary 569
Important Terms and Concepts 571
References 571
Questions and Problems 572
Design Questions 576
16. Composites 577
Learning Objectives 578
16.1 Introduction 578
PARTICLE-REINFORCED COMPOSITES 580
16.2 Large-Particle Composites 580
16.3 Dispersion-Strengthened
Composites 584
FIBER-REINFORCED COMPOSITES 585
16.4 Influence of Fiber Length 585
16.5 Influence of Fiber Orientation and
Concentration 586
16.6 The Fiber Phase 595
16.7 The Matrix Phase 596
16.8 Polymer-Matrix Composites 597
16.9 Metal-Matrix Composites 603
16.10 Ceramic-Matrix Composites 605
16.11 Carbon–Carbon Composites 606
16.12 Hybrid Composites 607
16.13 Processing of Fiber-Reinforced
Composites 607
STRUCTURAL COMPOSITES 610
16.14 Laminar Composites 610
16.15 Sandwich Panels 611
Summary 613
Important Terms and Concepts 615
References 616
Questions and Problems 616
Design Problems 619
17. Corrosion and Degradation of
Materials 621
Learning Objectives 622
17.1 Introduction 622
CORROSION OF METALS 622
17.2 Electrochemical Considerations 623
17.3 Corrosion Rates 630
17.4 Prediction of Corrosion Rates 631
17.5 Passivity 638
17.6 Environmental Effects 640
17.7 Forms of Corrosion 640
17.8 Corrosion Environments 648
17.9 Corrosion Prevention 649
17.10 Oxidation 651
CORROSION OF CERAMIC MATERIALS 654
DEGRADATION OF POLYMERS 655
17.11 Swelling and Dissolution 655
17.12 Bond Rupture 657
17.13 Weathering 658
Summary 659
Important Terms and Concepts 660
References 661
Questions and Problems 661
Design Problems 644
18. Electrical Properties 665
Learning Objectives 666
18.1 Introduction 666
ELECTRICAL CONDUCTION 666
18.2 Ohm’s Law 666
18.3 Electrical Conductivity 667
18.4 Electronic and Ionic Conduction 668
18.5 Energy Band Structures in
Solids 668
18.6 Conduction in Terms of Band and
Atomic Bonding Models 671
18.7 Electron Mobility 673
18.8 Electrical Resistivity of Metals 674
18.9 Electrical Characteristics of Commercial
Alloys 677
SEMICONDUCTIVITY 679
18.10 Intrinsic Semiconduction 679
18.11 Extrinsic Semiconduction 682
18.12 The Temperature Dependence of Carrier
Concentration 686
18.13 Factors That Affect Carrier Mobility 688
18.14 The Hall Effect 692
18.15 Semiconductor Devices 694
ELECTRICAL CONDUCTION IN IONIC CERAMICS
AND IN POLYMERS 700
18.16 Conduction in Ionic Materials 701
18.17 Electrical Properties of Polymers 701
DIELECTRIC BEHAVIOR 702
18.18 Capacitance 703
18.19 Field Vectors and Polarization 704
18.20 Types of Polarization 708
18.21 Frequency Dependence of the Dielectric
Constant 709
18.22 Dielectric Strength 711
18.23 Dielectric Materials 711
OTHER ELECTRICAL CHARACTERISTICS OF
MATERIALS 711
18.24 Ferroelectricity 711
18.25 Piezoelectricity 712
Summary 713
Important Terms and Concepts 715
References 715
Questions and Problems 716
Design Problems 720
19. Thermal Properties W1
Learning Objectives W2
19.1 Introduction W2
19.2 Heat Capacity W2
19.3 Thermal Expansion W4
19.4 Thermal Conductivity W7
19.5 Thermal Stresses W12
Summary W14
Important Terms and Concepts W15
References W15
Questions and Problems W15
Design Problems W17
20. Magnetic Properties W19
Learning Objectives W20
20.1 Introduction W20
20.2 Basic Concepts W20
20.3 Diamagnetism and
Paramagnetism W24
20.4 Ferromagnetism W26
20.5 Antiferromagnetism and
Ferrimagnetism W28
20.6 The Influence of Temperature on
Magnetic Behavior W32
20.7 Domains and Hysteresis W33
20.8 Magnetic Anisotropy W37
20.9 Soft Magnetic Materials W38
20.10 Hard Magnetic Materials W41
20.11 Magnetic Storage W44
20.12 Superconductivity W47
Summary W50
Important Terms and Concepts W52
References W52
Questions and Problems W53
Design Problems W56
21. Optical Properties W57
Learning Objectives W58
21.1 Introduction W58
BASIC CONCEPTS W58
21.2 Electromagnetic Radiation W58
21.3 Light Interactions with Solids W60
21.4 Atomic and Electronic
Interactions W61
OPTICAL PROPERTIES OF METALS W62
OPTICAL PROPERTIES OF NONMETALS W63
21.5 Refraction W63
21.6 Reflection W65
21.7 Absorption W65
21.8 Transmission W68
21.9 Color W69
21.10 Opacity and Translucency in
Insulators W71
APPLICATIONS OF OPTICAL PHENOMENA W72
21.11 Luminescence W72
21.12 Photoconductivity W72
21.13 Lasers W75
21.14 Optical Fibers in Communications W79
Summary W82
Important Terms and Concepts W83
References W84
Questions and Problems W84
Design Problem W85
22. Materials Selection and Design
Considerations W86
Learning Objectives W87
22.1 Introduction W87
MATERIALS SELECTION FOR A TORSIONALLY
STRESSED CYLINDRICAL SHAFT W87
22.2 Strength Considerations–Torsionally
Stressed Shaft W88
22.3 Other Property Considerations and the
Final Decision W93
AUTOMOTIVE VALVE SPRING W94
22.4 Mechanics of Spring Deformation W94
22.5 Valve Spring Design and Material
Requirements W95
22.6 One Commonly Employed Steel
Alloy W98
FAILURE OF AN AUTOMOBILE REAR
AXLE W101
22.7 Introduction W101
22.8 Testing Procedure and Results W102
22.9 Discussion W108
ARTIFICIAL TOTAL HIP REPLACEMENT W108
22.10 Anatomy of the Hip Joint W108
22.11 Material Requirements W111
22.12 Materials Employed W112
CHEMICAL PROTECTIVE CLOTHING W115
22.13 Introduction W115
22.14 Assessment of CPC Glove Materials to
Protect Against Exposure to Methylene
Chloride W115
MATERIALS FOR INTEGRATED CIRCUIT
PACKAGES W119
22.15 Introduction W119
22.16 Leadframe Design and Materials W120
22.17 Die Bonding W121
22.18 Wire Bonding W124
22.19 Package Encapsulation W125
22.20 Tape Automated Bonding W127
Summary W129
References W130
Design Questions and Problems W131
23. Economic, Environmental, and
Societal Issues in Materials Science
and Engineering W135
Learning Objectives W136
23.1 Introduction W136
ECONOMIC CONSIDERATIONS W136
23.2 Component Design W137
23.3 Materials W137
23.4 Manufacturing Techniques W137
ENVIRONMENTAL AND SOCIETAL
CONSIDERATIONS W137
23.5 Recycling Issues in Materials Science and
Engineering W140
Summary W143
References W143
Design Question W144
Appendix A The International System of
Units A1
Appendix B Properties of Selected
Engineering Materials A3
B.1 Density A3
B.2 Modulus of Elasticity A6
B.3 Poisson’s Ratio A10

Geological Procedures Workbook free download







Instructions On Project Completion
The aim of this workbook project is to provide you with the information on
various formation evaluation topics that can best be studied outside a
classroom. It is not the intention of the Training Department that you complete
all the assignments as soon as possible. This workbook project should allow
you to spend enough time on each particular subject in order to thoroughly
understand those aspects of geologic evaluation and interpretation as they
apply to every day wellsite operations. This workbook includes:
• Sedimentary Petrology
• Sedimentary Structures
• Sedimentary Environments
• Reservoir Geology
• Wireline/MWD Logs in Formation Evaluation
• Introduction to Seismic Surveying
• Introduction to Geochemistry
• Introduction to Well Testing
At the end of each chapter there will be “Self-Check” exercises, which are
designed to assist you in understanding the information covered in the chapter.
Do not proceed until you are confident that you fully understand the concepts,
calculations, and applications of the chapter's subject matter. Direct any
questions you may have to the Training Department.
When you have completed the workbook assignments, there will be several
“Return” assignments. These are to be completed and returned to the regional/
area Training Department. Using these assignments, the Training Department
will be able to assist you in the next step in completing the module
requirements. It is in your best interest to stay in contact with your Training
Department.
This workbook is designed to review those aspects of sedimentary geology that
are unique to the oil industry and to increase your knowledge and
understanding of formation evaluation using those geologic principles.
There is a lot to learn, and remember, the learning process will never end.
There are no real shortcuts. You will be required to learn for yourself, with
guidance and assistance from experienced field personnel and the Training
Department.






Table of Contents
Chapter 1
Sedimentary Petrology
Additional Review/Reading Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Chapter 1
Sedimentary Petrology
Clastic Petrology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
Sediment Texture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
Components of Siliclastics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
Classification and Petrography of Sandstones. . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Porosity and Permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10
Mudrocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10
Carbonate Petrology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13
Components of Limestones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13
Ooids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14
Coated Grains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14
Peloids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14
Intraclasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15
Micrite Envelopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15
Stromatolites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15
Oncolites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15
Classification of Limestone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15
Carbonate Cementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16
Dolomitization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-18
Porosity in Carbonates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-18
Evaporites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-22
Chicken Wire Anhydrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-22
Enterolithic Anhydrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-23
Sabka Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-23
Laminated Anhydrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-23

Aphanitic Texture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-23
Evaporite Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-23
Ironstones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-24
Color Of Sedimentary Rocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-24
Standardization of Color Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-24
Colors and Sedimentary Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-25
Oxidation State of Iron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-25
Carbonaceous Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-26
Colored Minerals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-26
Color Patterns in Sedimentary Rocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-27
Self-Check Exercises: Sedimentary Petrology
Chapter 2
Sedimentary Structures
Chapter 2
Sedimentary Structures
Bedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Primary Bedding Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Planar Lamination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Tabular Cross Lamination/Bedding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
Trough Cross Lamination/Bedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
Lenticular/Flaser Bedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
Climbing Ripple Lamination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
Synaresis Cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
Desiccation Cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
Post Depositional Deformed Bedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
String Convolute Bedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
Load Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
Flame Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
Ball and Pillow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
Dish and Pillar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
Erosional Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
Flute Marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
Groove Marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
Impact Marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
Gutter Casts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
Sole Marks in Cores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
Bio-genic Sedimentary Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14

Facies And Facies Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Facies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Facies Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Walther's Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Continental Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
Alluvial Fans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
Braided Stream Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
Meandering River Deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
Eolian Facies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
Barrier Island And Near Shore Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11
Deltaic Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16
Alluvial Sediments and The Sediment Basin . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16
Delta Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16
Fluvial Dominated Deltas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17
Tide Dominated Deltas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18
Wave Dominated Deltas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18
Recognition of Ancient Delta Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19
Growth Faults in Alluvially Dominated Deltas . . . . . . . . . . . . . . . . . . . . . . . . . 3-19
Case Studies - Deltaic Environments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19
Submarine Fans And Turbidites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-23
Morphology of the Depositional System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-24
Lithology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-24
Exploration Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-25
Carbonate Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-26
Environmental Zones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-26
Lithologies and Facies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-31
Chapter 3
Self-Check Exercises:
Sedimentary Environments
Chapter 4
Reservoir Geology
Chapter 4
Reservoir Geology
Physical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
Reservoir Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Reservoir Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Crude Oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Chemical Composition of Crude Oils . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Physical Properties of Crude Oil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
Reservoir Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
Classification of Reservoir Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
Water Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10
The Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11
Anticlinal Traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13
Fault Traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13
Stratigraphic Traps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16
Natural Drive Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18
Gas Drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18
Water Drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18
Combination Drives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18
Reservoir Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-19
Isochron Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-19
Depth Structure Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-19
Isopach and Isochore Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-19
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-21
Chapter 4
Self-Check Exercises:
Reservoir Geology
Chapter 5
Wireline/MWD Logs In Formation Evaluation
Chapter 5
Wireline/MWD Logs In Formation Evaluation
Basic Logging Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
Spontaneous Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
Gamma Ray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
Density Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
Acoustic/Sonic Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
Neutron Log. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8
Formation Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
The Spontaneous Potential Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
Short-Spaced Resistivity Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
Micro-Resistivity Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12
Gamma Ray Curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12
Lithology Determination Using Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12
Combination Gamma Ray Neutron-Density Log . . . . . . . . . . . . . . . . . . . . . . . 5-12
Porosity Log Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14
Complex Lithology Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14
Shale Volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15
Facies And Depositional Environment Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17
The SP Curve and Geologic Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17
The Gamma Ray Curve and Geologic Environments . . . . . . . . . . . . . . . . . . . . 5-19
Geometry of the SP and GR Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-20
Cautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21
Formation Mechanical Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-22
Acoustic Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-22
Elastic Constants From Well Log Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-22
Fracture Detection From Well Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-24
Acoustic/Sonic Log Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-24
Caliper Log Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-25
Density Log Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-25
Resistivity Log Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-25
Litho-Density Log Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-25
Dipmeter Log Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-26
Review of Fracture Detection Using Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-26
Chapter 5
Self-Check Exercises:
Wireline/MWD Logs In Formation Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-27
Chapter 6
Introduction To Seismic Surveying
Chapter 6
Introduction To Seismic Surveying
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
The Seismic Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
Array Preparation and Signal Recording . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6
Recording Instruments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8
Shot-Hole Drilling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9
The Seismic Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9
The Seismic Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-12
Headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-15
Mapping With Seismic Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-15
The Correlation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-15
Contouring The Horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-16
Identifying Seismic Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-16
Artificial Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-16
Anticlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-16
Ancient Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-17
Fault Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-17
The Nightmare of Diapirs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-19
Reefs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-21
What Is The Overall Geologic Picture? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-23
Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-23
Deposition Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-24
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-25
Chapter 6
Self-Check Exercises:
Introduction To Seismic Surveying
Chapter 7
Introduction To Geochemistry
Chapter 7
Introduction To Geochemistry
Sources Of Petroleum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3
Depositional Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5
Kerogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5
Stages Of Petroleum Maturation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7
Diagenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7
Catagenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9

Coring Handbook free download





Baker Hughes INTEQ

Introduction to Coring
Through coring, Engineers, Geologists
and Petrophysicists gain access to
reservoir information that can be
gathered in no other way. Data on the
formation’s lithology, flow
characteristics, storage capacity and
production potential are just a few of the
valuable types of information that can be
obtained by a successful coring program.
This chapter discusses what coring is and
the benefits associated with the process.
It also describes how to plan a successful
coring project and the BHI coring
services that are available.

Coring Definition
Coring is the removal of sample formation material from a
wellbore. To the extent possible, core samples are taken in
an undamaged, physically unaltered state. The formation
material may be solid rock, friable rock, conglomerates,
unconsolidated sands, coal, shales, gumbos, or clays.
Coring can be conducted by various methods with a variety
of tools. But in the oilfield, coring is generally
accomplished by two methods:
• Full Hole Coring: Core material ranging in
diameter from 1¾" to 5¼" is recovered inside of a
core barrel in vertical, deviated, horizontal, or
sidetracked wells. Depending upon the coring
system employed, the core can be recovered in
preserved or unpreserved states, and can be used for
a wide range of analytical applications. Baker
Hughes INTEQ offers a complete range of full-hole
coring services.
• Sidewall Coring: Cylindrical plug-shaped samples,
generally 1" in diameter, are recovered from the
walls of the wellbore by percussion or rotary coring
techniques. This sampling takes place in the first
few inches of the wellbore wall in regions that
generally are invaded by drilling fluid filtrates. The
resulting samples are unpreserved and frequently
are damaged by the recovery procedure. Sidewall
core plugs are of limited use from an analytical
standpoint. Baker Hughes INTEQ does not offer
sidewall coring services.



Table of Contents
Table of Contents
List of Figures
List of Tables
Chapter 1
Introduction to Coring
Coring Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
The Purpose of Coring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
Geological Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
Completion Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
Engineering Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
Planning the Successful Coring Program . . . . . . . . . . . . . . . . 1-6
Coring Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
Conversion Factors and Physical Constants . . . . . . . . . . . . . . 1-6
Chapter 2
Coring Systems
High Torque HT Series Core Barrels . . . . . . . . . . . . . . . . . . . 2-1
HT Series™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
HT Series Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Coremaster™ Series Core Barrels . . . . . . . . . . . . . . . . . . . . . 2-5
Coremaster Features & Benefits . . . . . . . . . . . . . . . . . . . 2-7
Conventional 250P Core Barrels . . . . . . . . . . . . . . . . . . . . . . 2-9
250P Series Core Barrels . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
250P Core Barrel Features . . . . . . . . . . . . . . . . . . . . . . . 2-11
350P Slimhole Core Barrel . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
350P Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
350P Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
Hydro-Lift™ Full Closure Catcher . . . . . . . . . . . . . . . . . . . 2-15
Tool Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
Hydro-Lift Features & Benefits . . . . . . . . . . . . . . . . . . . 2-17



Core Barrel HT-Series . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-18
Core Barrel 250P / 350P Mechanical Properties . . . . . . . . . .2-19
CoreDrill™ Coring-While-Drilling . . . . . . . . . . . . . . . . . . .2-24
CoreDrill Model 1a . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-26
CoreDrill Features/Benefits . . . . . . . . . . . . . . . . . . . . . .2-26
CoreDrill Navi-Gamma Tool (Model 2) . . . . . . . . . . . . .2-27
Motor Coring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-28
Drop Ball Sub and Downhole Activated Flow Diverter . .2-29
Integral Coring Motor System . . . . . . . . . . . . . . . . . . . . . . .2-30
Modular Coring Systems . . . . . . . . . . . . . . . . . . . . . . . . . . .2-32
Horizontal Coring Systems . . . . . . . . . . . . . . . . . . . . . . . . .2-35
Long Radius Coring System . . . . . . . . . . . . . . . . . . . . .2-35
Medium Radius Coring System . . . . . . . . . . . . . . . . . . .2-35
Oriented Coring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-36
Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-37
Survey Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-38
Electronic Magnetic Survey Tool . . . . . . . . . . . . . . . . . .2-38
Positive Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-40
Modular Magnetic Tool . . . . . . . . . . . . . . . . . . . . . . . . .2-41
MMT Features . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-42
CoreGard™ Low Invasion Coring System . . . . . . . . . . . . . .2-44
Filtrate Invasion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-44
Bit Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-45
Inner Tube Pilot Shoe . . . . . . . . . . . . . . . . . . . . . . . . . .2-46
CoreGard Features . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-46
Drilling Fluids Additives . . . . . . . . . . . . . . . . . . . . . . . . . . .2-47
Drilling Fluids Bridging Solids . . . . . . . . . . . . . . . . . . .2-47
Tracers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-48
ISOTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-48
DFE-1503 Water-Base Mud . . . . . . . . . . . . . . . . . .2-49
DFE-432 Oil-Based Mud . . . . . . . . . . . . . . . . . . . . .2-51
Tracers for Water-Base Fluids . . . . . . . . . . . . . . . . . . . .2-53
Chemical Salts . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-54
Stable Isotopes . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-54
Radioactive Isotopes . . . . . . . . . . . . . . . . . . . . . . . .2-54
Tracers for Oil-Base Fluids . . . . . . . . . . . . . . . . . . . . . .2-55
Gel CoringSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-57
Gel Coring Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . .2-59



In Situ Data Gathering Pressure Coring . . . . . . . . . . . . . . . . 2-62
IDGS Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-63
IDGS Equipment Description . . . . . . . . . . . . . . . . . 2-64
Service Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-65
HTHP (High Temperature High Pressure) Coring . . . . . . . . . 2-67
So Coring – Reservoir Characterization Coring . . . . . . . . . . 2-69
So Coring Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-69
So Coring Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-69
Underbalanced Coring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-70
Coiled Tubing Coring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-71
Chapter 3
Inner Barrel Components
Bottomhole Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
Inner Coring Barrels and Liners . . . . . . . . . . . . . . . . . . . . . . . 3-3
Steel Inner Barrels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Aluminum Inner Tubes . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Fiberglass Inner Tubes . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
Plastic Liners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
Disposable Liners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
Inner Tube-to-Rock Friction . . . . . . . . . . . . . . . . . . . 3-7
JamBuster™ Anti-Jamming Coring System . . . . . . . . . . . . . . 3-9
JamBuster Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
Long Distance Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
Core Jam Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
Principle of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
Drop Ball Subs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14
Side Entry Drop Ball Sub . . . . . . . . . . . . . . . . . . . . . . . 3-14
Downhole Activated Flow Diverter . . . . . . . . . . . . . . . . 3-14
Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15
Pressure Venting Check Valves . . . . . . . . . . . . . . . . . . . 3-16
Standard Pressure Check Valve . . . . . . . . . . . . . . . . 3-16
Spring-Loaded Pressure Check Valve . . . . . . . . . . . 3-17
Inner Tube Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17



Chapter 4
Coring Bits
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-1
PDC (Polycrystalline Diamond Compact) Bits . . . . . . . . .4-2
Anti-Whirl™ PDC Bits . . . . . . . . . . . . . . . . . . . . . . . . . .4-4
PDC Cutter Options . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-6
Gold Series Cutters . . . . . . . . . . . . . . . . . . . . . . . . . .4-6
Black Diamond™ Cutters . . . . . . . . . . . . . . . . . . . . .4-8
Engineering Cutter Layout . . . . . . . . . . . . . . . . . . . . . . . .4-8
Natural Diamond Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-11
Impregnated (Synthetic Diamond) Bits . . . . . . . . . . . . . . . . .4-11
Core Bit Selection Guide . . . . . . . . . . . . . . . . . . . . . . . . . . .4-12
PDC Coring Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-13
Ballaset® Core Bits . . . . . . . . . . . . . . . . . . . . . . . . . . .4-14
Natural Diamond Core Bits . . . . . . . . . . . . . . . . . . . . . .4-14
Chapter 5
Coring Procedures
Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-1
Major Core Barrel Components . . . . . . . . . . . . . . . . . . . .5-1
Other Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-3
Coring System Preparations . . . . . . . . . . . . . . . . . . . . . . . . . .5-4
Outer Barrel Makeup . . . . . . . . . . . . . . . . . . . . . . . . . . .5-4
Core Barrels Shorter than Derrick Height . . . . . . . . .5-4
Core Barrels Longer than Derrick Height . . . . . . . . .5-7
Considerations . . . . . . . . . . . . . . . . . . . . . . . . . .5-8
Standard Barrel Application . . . . . . . . . . . . . . . .5-8
Loading Inner Barrels/Tubes . . . . . . . . . . . . . . . . . . . . . . . .5-12
Procedures for Fiberglass & Aluminum Barrels . . . . . . .5-12
Inner Tube Adjustment . . . . . . . . . . . . . . . . . . . . . . . . .5-13
Shims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-14
Long Distance Adjustment . . . . . . . . . . . . . . . . . . . .5-16
Procedures for Plastic Liners or Inner Tubes . . . . . . . . . .5-17
Plastic Liners . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-17



Running Plastic Liners w/ 250P Series Core Barrel . 5-17
Loading 30-ft Core Barrel . . . . . . . . . . . . . . . . . 5-18
Unloading 30-ft Core Barrel . . . . . . . . . . . . . . . 5-19
Loading 60-ft Core Barrel . . . . . . . . . . . . . . . . . 5-20
Unloading 60-ft Core Barrel . . . . . . . . . . . . . . . 5-22
Coring with Plastic Liners . . . . . . . . . . . . . . . . . . . . 5-24
General Coring Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 5-26
Check Points Before Coring . . . . . . . . . . . . . . . . . . . . . 5-26
Running in Hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-26
Conditioning Hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-26
Dropping Ball to Start Coring . . . . . . . . . . . . . . . . . . . . 5-27
Rotary Rig Connection Procedure . . . . . . . . . . . . . . . . . 5-28
Top Drive Connection Procedure . . . . . . . . . . . . . . . . . . 5-30
Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 5-31
Circulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-31
Annular Velocities . . . . . . . . . . . . . . . . . . . . . . . . . 5-31
Circulation Volumes . . . . . . . . . . . . . . . . . . . . . . . . 5-32
Coring with Lost Circulation Material . . . . . . . . . . . . . . 5-32
Rotary Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-33
Weight on Bit (WOB) . . . . . . . . . . . . . . . . . . . . . . . . . . 5-34
Feeding Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-34
Standpipe Pressure Fluctuations . . . . . . . . . . . . . . . . . . 5-35
Breaking Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-35
Jamming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-36
Pulling-Out-Of-Hole . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-36
Conventional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-36
Vented Inner Barrels . . . . . . . . . . . . . . . . . . . . . . . . 5-37
Breaking Out of Outer and Inner Barrels . . . . . . . . . . . . 5-37
Retrieving Drop Ball . . . . . . . . . . . . . . . . . . . . . . . . 5-37
Normal Operations . . . . . . . . . . . . . . . . . . . . . . . . . 5-37
Lay Down/Cutting of Inner Barrel . . . . . . . . . . . . . . 5-39
Outer Barrel Breakdown Procedure . . . . . . . . . . . . . . . . 5-42
Back-off of Safety Joint . . . . . . . . . . . . . . . . . . . . . . . . 5-43
Procedure Summary . . . . . . . . . . . . . . . . . . . . . . . . 5-45
Retrieval of Inner Barrel when Core Barrel Safety Joint has
Backed Off and Outer Barrel is Left in Hole . . . . 5-46
Check/Change-Out Core Bit on Multi-Section Barrels . . 5-47
Makeup of Barrel After Bit Check/Replacement . . . . 5-48
Motor Coring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-49



JamBuster Coring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-50
Shear Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-50
Set-Up Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-50
Jam Indicator Operations . . . . . . . . . . . . . . . . . . . . . . . .5-53
Fishing Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-53
Hydro-Lift Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-54
Hydro-Lift Make Up . . . . . . . . . . . . . . . . . . . . . . . . . . .5-54
Hydro-Lift Coring Operations . . . . . . . . . . . . . . . . . . . .5-57
High Pressure Coring . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-61
Pressure Relief Check Valves . . . . . . . . . . . . . . . . . . . .5-61
Pulling Out Of Hole . . . . . . . . . . . . . . . . . . . . . . . . . . .5-61
Procedure 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-62
Procedure 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-62
Core Barrel Maintenance (On-Site) . . . . . . . . . . . . . . . . . . .5-63
Safety – H2S Wells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-64
Wellsite Core Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-65
GammaTrak Surface Logging . . . . . . . . . . . . . . . . . . . .5-65
Wellsite Core Evaluation Unit . . . . . . . . . . . . . . . . . . . .5-66
Core Stabilization/Preservation . . . . . . . . . . . . . . . . . . . . . .5-69
Conventional Core Recovery . . . . . . . . . . . . . . . . . . . . .5-69
Stabilized Core Recovery . . . . . . . . . . . . . . . . . . . . . . .5-69
Basic Preservation . . . . . . . . . . . . . . . . . . . . . . . . .5-72
Freezing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-73
Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-74
Chapter 6
Coring Fishing Diagrams
250P Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-2
HT Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-7
CoreDrill Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-10
Appendix A
Conversion Factors & Physical Constants
Physical Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-44
Gas Constants (R) . . . . . . . . . . . . . . . . . . . . . . . . . A-44
Acceleration of Gravity (Standard) . . . . . . . . . . . . A-44
Velocity of Sound in Dry Air @ 0°C and 1 ATM . . . A-44
Heat of Fusion of Water . . . . . . . . . . . . . . . . . . . . A-44

Heat of Vaporization of Water 1.0 ATM . . . . . . . . . A-44
Specific Heat of Air . . . . . . . . . . . . . . . . . . . . . . . . A-44
Density of Dry Air @ 0°C and 760 mm . . . . . . . . . A-44
Appendix B
Tables and Charts
Table B-1 HT Series Outer Barrel Mechanical Properties . . . B-1
Table B-2 Coremaster Series Outer Barrel Mech. Properties B-1
Table B-3 250P Series Outer Barrel Mechanical Properties . B-2
Table B-4 250P/350P/HT Series Inner Tube Mech. Properties B-3
Table B-5 Aluminum Inner Tube (IT) Specifications . . . . . . B-5
Table B-6 Aluminum Inner Tube Properties (6061-T6) . . . . B-5
Table B-7 Spacing of Aluminum Inner Tubes Based on
Thermal Expansion Coefficients . . . . . . . . . . . . . . . . . . . . . B-6
Table B-8 Spacing of Fiberglass Inner Tubes Based on
Thermal Expansion Coefficients . . . . . . . . . . . . . . . . . . . . . B-7
Table B-9 Inner Tube Relative Thermal Expansion . . . . . . . B-8
Table B-10 Fiberglass Inner Tube Dimensions . . . . . . . . . . . B-9
Table B-11 Fiberglass Inner Tube Specifications . . . . . . . . . B-9
Table B-12 Fiberglass Inner Tube Critical Buckling Pressure B-10
Table B-13 Fiberglass Inner Tube Axial Tensile Strength . . B-10
Table B-14 L.D. Adjustment System Calculation . . . . . . . . B-11
Table B-15 Possible Causes for Standpipe Pressure Changes B-12
Table B-16 Drillstring Connection Conversion . . . . . . . . . . B-13
Table B-17 API Reg. Pin Connections by Bit Size . . . . . . . B-14
Table B-18 Drill Collar Weights (lbs/ft) . . . . . . . . . . . . . . . B-14
Table B-19 Duplex Pump Capacities* (gallons/stroke) . . . . B-15
Table B-20 Triplex Pump Capacities* (gallons/stroke) . . . . B-16
Table B-21 Drill Collar Weights . . . . . . . . . . . . . . . . . . . . . B-17
Table B-22 Casing Drift Sizes . . . . . . . . . . . . . . . . . . . . . . . B-18
Table B-23 Tubing Drift Sizes . . . . . . . . . . . . . . . . . . . . . . . B-21
Table B-24 Fluid Density and Pressure Gradients . . . . . . . . B-22
Table B-25 Inch to Metric Conversion . . . . . . . . . . . . . . . . . B-23
Table B-26 Fraction Conversion Chart . . . . . . . . . . . . . . . . B-24
Table B-27 Core Barrel Pressure Drop Calculations . . . . . . B-25