Your network must support the following Cisco IOS XE features:
• IP Cisco Express Forwarding
• Multiprotocol Label Switching (MPLS)
Your network must support at least one of the following protocols:
• Intermediate System-to-Intermediate System (IS-IS)
• Open Shortest Path First (OSPF)
Before configuring FRR link and node protection, it is assumed that you have done the following tasks but
you do not have to already have configured MPLS traffic engineering (TE) tunnels:
• Enabled MPLS TE on all relevant routers and interfaces
• Configured MPLS TE tunnels
Restrictions for MPLS Traffic Engineering—Fast Reroute Linkand Node Protection• Interfaces must use MPLS Global Label Allocation.
• The router’s physical interface for MPLS-TE and Fast RR for Gigabit Ethernet (GE), and Packet over
SONET (POS) is supported for enabling a 50 millisecond (ms) failover. However, the GE
subinterfaces, logical interfaces and copper interface (e.g. Fast Ethernet interface) are not supported
for enabling a 50 ms failover (even though they may be configurable). Also, FRR is not configurable
on ATM interface.
• The FRR link protect mode failover time is independent of the number of prefixes pointing to the link.
• Cisco IOS-XE does not support QoS on MPLS-TE tunnels.
• Backup tunnel headend and tailend routers must implement FRR as described in draft-pan-rsvpfastreroute-
00.txt.
• Backup tunnels are not protected. If an LSP is actively using a backup tunnel and the backup tunnel
fails, the LSP is torn down.
• LSPs that are actively using backup tunnels are not considered for promotion. If an LSP is actively
using a backup tunnel and a better backup tunnel becomes available, the active LSP is not switched to
the better backup tunnel.
• You cannot enable FRR Hellos on a router that also has Resource Reservation Protocol (RSVP)
Graceful Restart enabled.
• MPLS TE LSPs that are FRR cannot be successfully recovered if the LSPs are FRR active and the
Point of Local Repair (PLR) router experiences a stateful switchover (SSO).
Fast RerouteFast Reroute (FRR) is a mechanism for protecting MPLS TE LSPs from link and node failures by locally
repairing the LSPs at the point of failure, allowing data to continue to flow on them while their headend
routers attempt to establish new end-to-end LSPs to replace them. FRR locally repairs the protected LSPs
by rerouting them over backup tunnels that bypass failed links or node.
Link Protection
Backup tunnels that bypass only a single link of the LSP’s path provide link protection. They protect LSPs
if a link along their path fails by rerouting the LSP’s traffic to the next hop (bypassing the failed link).
These are referred to as next-hop (NHOP) backup tunnels because they terminate at the LSP’s next hop
beyond the point of failure. The figure below illustrates an NHOP backup tunnel.
Node ProtectionFRR provides node protection for LSPs. Backup tunnels that bypass next-hop nodes along LSP paths are
called next-next-hop (NNHOP) backup tunnels because they terminate at the node following the next-hop
node of the LSP paths, thereby bypassing the next-hop node. They protect LSPs if a node along their path
fails by enabling the node upstream of the failure to reroute the LSPs and their traffic around the failed
node to the next-next hop. FRR supports the use of RSVP Hellos to accelerate the detection of node
failures. NNHOP backup tunnels also provide protection from link failures, because they bypass the failed
link and the node.
The figure below illustrates an NNHOP backup tunnel.